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Abstract— We present a method for fast analysis of signal
and power integrity in system-on-package applications based on
a recently developed multilayered finite difference method (M-
FDM). First we present a rapid solver that can be used to extract
materials properties of dielectrics. The extracted frequency-
dependent dielectric constant and loss tangent can then be used
in any field simulator for improved accuracy. Then we present M-
FDM for simulation of system-on-package applications. In order
to accurately model multilayered planar structures, which are
three dimensional, M-FDM combines two-dimensional models for
power/ground planes using a multilayered unit cell approach.
In this way, noise coupling can be considered not only in the
transversal direction between two planes, but also vertically from
one plane pair to another through the apertures and via holes.
For a co-simulation of signal and power integrity, transmission
line models also need to be included. The interaction between the
signal transmission and power distribution modes is taken into
account using a modal decomposition technique. An equivalent
circuit model becomes available based on this finite difference
approximation as well. Based on this network representation,
second order effects such as fringe and gap fields can be included
in M-FDM using equivalent circuit models for these fields. This
results in a very accurate method that can be used for fast
analysis of signal and power integrity in arbitrary package and
board designs having any stack-up configuration and number of
layers.

I. INTRODUCTION

There can be many power/ground layers with via holes
and cut-outs in a system-on-package as shown in Fig. 1.
These planes can be a major factor for noise coupling. There
can be noise coupling not only in the transversal direction
between two planes, but also vertically from one plane pair
to another through the apertures and via holes. In addition,
noise voltage that gets coupled to the edge of the board may
cause significant electromagnetic interference. Hence, accurate
modeling of power/ground planes is critical to estimate the
noise levels.

Excessive supply voltage fluctuations also get coupled to
the transmission lines, causing signal integrity problems. For
example, mode conversion at vias due to return-path dis-
continuities is one of the main contributors to power/ground
noise in packages. At the via hole, the parallel-plate mode
gets excited due to switching signal currents, and conversely,
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Fig. 1. Multilayered System-on-Package

the noise voltage between the planes gets coupled to the
stripline mode. In order to consider this mode conversion, a
modal decomposition technique can be applied [1], [2], [3],
[4], [5], [6]. In these approaches, the transmission lines and
power/ground planes can be modeled separately and combined
together using controlled sources.

Finite-difference frequency domain (FDFD) solution of the
Helmholtz equation has been recently proposed as a simple
and efficient method for the modeling of single plane pairs
[7] and has been extended to multiple plane pairs as the
multilayered finite-difference method (M-FDM) [8]. M-FDM
has been extended to incorporate transmission lines as well,
based on the modal decomposition method [9].

Package structures typically contain split planes and power
islands. The coupling between them is neglected in this for-
mulation. Also, any narrow width lines present in the structure
will be modeled inaccurately. In the case of narrow-width
lines, the effect of fringing fields must be modeled. For the
case of slots in the plane, gap coupling has to be modeled.
These second-order effects have been recently included in M-
FDM using equivalent circuit models [10].

In this paper we show the fundamentals of M-FDM and
how it is capable of modeling 3D structures using a proper
combination of 1D and 2D models as well as parasitic fringe
and gap fields. This provides overall a very general method,
which can represent the vertical and horizontal coupling in a
multilayered structure including signal lines and power/ground
planes. As a result, accurate modeling of a full system-on-
package or PCB becomes possible.
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II. VERTICAL COUPLING THROUGH MULTILAYERED

PLANES

In a single plane pair, the fundamental noise coupling
occurs in the horizontal direction between the two planes that
constitute the plane pair. The plane pair acts essentially as
a cavity resonator. In a multilayered structure, there can be
noise coupling in both the horizontal and vertical directions
through the power/ground planes. Such a structure consists
of multiple plane pairs. The vertical coupling can then be
considered as a coupling between these plane pairs. Assuming
a well developed skin effect, the vertical coupling through
the conductors can be neglected. The major vertical coupling
occurs through the interactions between these plane pairs at
their boundaries. This coupling mechanism can be described as
the aperture coupling or the coupling due to the wrap-around
currents as described in the following example.

Fig. 2(a) shows a simple one-dimensional case, where the
right half of the middle plane is missing. For this example,
there are three plane pairs based on different combinations of
the planes. Assume that there is a current on the middle plane
with its return current on the bottom plane. These currents are
confined inside the plane pair 2 as shown in the figure. When
this current arrives the right boundary of this plane pair, it can
wrap-around the aperture. Hence this so-called wrap-around
current can excite currents in plane pair 1 and plane pair 3
as shown in the figure. This is a direct current coupling path
between the plane pairs and is critical for accurate estimation
of coupling in multilayered planes.

In order to model the wrap-around currents, the three plane
pairs can be modeled separately and interconnected with
each other as shown in Fig. 2(b). Such an interconnection
enforces the correct boundary conditions such that the wrap-
around currents are taken into account as shown in the figure.
Note that the electric field is assumed to have no horizontal
components. As a result of this, the fringe and gap fields are
neglected. Such an assumption is accurate for large structures
separated with a dielectric that has a small thickness. Such
second order effects can be taken into account using additional
circuit elements as it will be shown in the following sections.

Regarding a practical implementation of the modeling ap-
proach shown in Fig. 2(b), several points need consideration.
First of all, there should be no conflict between the models
regarding a common reference terminal for the definition of
voltages at the interconnection. This point becomes important
if circuit models with different ground references are being
used to model the plane pairs. Another problem is locating
the boundaries between the plane pairs and realizing the inter-
connections. This can be very difficult for a structure having
many number of layers that have complicated boundaries.

The multilayered finite-difference method (M-FDM) that is
presented in this paper overcomes these practical problems
by defining multilayered unit cell models that have the same
ground reference, such that interconnection of the unit cells
becomes straightforward. The following section explains the
details of M-FDM.
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Fig. 2. Wrap-around currents due to the coupling through a gap in the
middle plane for a simple one-dimensional case. (a) Geometry. (b) Equivalent
network model.

III. MATERIALS CHARACTERIZATION USING A RAPID

SOLVER

The underlying elliptic partial differential equation for the
modeling of planes is a Helmholtz equation(∇2

T + k2
)
u = −jωµdJz, (1)

where ∇2
T is the transverse Laplace operator parallel to the

planar structures, k is the wave number, u is the voltage,
ω is the angular frequency, µ is the permeability, d is the
distance between the planes, and Jz is the current density
injected normally to the planes [11]. The problem definition
is completed by assigning homogenous Neumann boundary
conditions, which correspond to assuming a magnetic wall, or
an open circuit, on the periphery of the planes.

One method to solve the Helmholtz equation is by apply-
ing the finite-difference scheme. The 2-dimensional Laplace
operator (1) can be approximated as

∇2
T ui,j = (ui,j−1 + ui,j+1 + ui−1,j + ui+1,j − 4ui,j) /h2

(2)
within an error in the order of O(h2), where h is the mesh
length and ui,j is the voltage at node (i, j) for the cell-centered
discretization.

Applying this 5-point approximation on the Helmholtz
equation yields

ui,j−1 + ui,j+1 + ui−1,j + ui+1,j − 4ui,j + h2k2ui,j

= −h2jωµdJz, (3)

which gives a system of linear equations when applied to all
nodes on the plane.

Obtaining the frequency response of a plane pair requires
the solution of a large sparse linear system that is obtained
by applying (3) on all nodes on the plane and considering
the boundary conditions. For the general case of a plane pair
with an arbitrary shape, this involves the solution of a linear
equation system [8]. For solid rectangular planes, however,
this solution can be obtained using a ”rapid” method based on
the Fourier transform [12].

Applying the discrete cosine transform to (3) yields

ûm,n =
−h2jωµdĴz

(2 cos πm
I + 2 cos πn

J − 4 + h2k2)
, (4)

where ûm,n is the discrete cosine transform of ui,j . Hence the
procedure for solving the Helmholtz equation for rectangular
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Fig. 3. Comparison between the rapid solver and measurement results
(dielectric constant (DK)=27.6 at 1GHz, loss tangent (DF)=0.03)

planes using the discrete cosine transform can be summarized
as:

• Compute the discrete cosine transform of the right hand
side (−h2jωµdĴz).

• Compute ûm,n from (4).
• Inverse transform ûm,n to obtain the solution ui,j .
The discrete cosine transform ensures that homogeneous

Neumann boundary conditions (i.e., open circuit boundary
conditions) hold at the boundaries. This rapid solution method
does not require the solution of a linear equation system.
Hence it provides a very efficient way of analyzing solid
rectangular planes. As an example, more than a 50X speed-up
in simulation time could be obtained using the rapid solver
compared to the conventional solution using a sparse matrix
solver for a 500x500 discretization.

Since power/ground planes in a system-on-package contain
via holes and cut-outs, the rapid solver is not suitable for
analyzing such structures. An equivalent-circuit based model
can be applied in this case, as it will be shown in the next
section. However, the rapid solver can be quite useful to extract
the materials properties of dielectrics [13], where a continuous
rectangular plane pair is used as a resonator. By matching the
simulation results to the measurement results, the frequency-
dependent dielectric constant and loss tangent can be extracted.
Such a method relies on a lot of simulations with different
materials properties, hence the rapid solver can speed-up this
process significantly.

To illustrate the application of the rapid solver for materials
characterization, a parallel-plate capacitor, which has dimen-
sions of 33.3mm x 33.3mm, was measured. The 2-port Z-
parameters of the structure was obtaiend by placing the ports
on two opposite corners on the planes. Transfer impedance
(Z12) was used for comparison with measurements, since it is
not affected by the probe inductance and resistance.

Fig. 3 shows the comparison between the rapid solver and
the magnitude of measured Z12, where the dielectric properties
were specified as εr = 27.6 at 1GHz and tan δ = 0.03 to the
rapid solver. It can be seen that at around 1GHz, the rapid
solver matches excellently with the measurements. At higher

frequencies, there is more attenuation in the measurements.
Hence, the loss tangent seems to be increasing with frequency,
and another fit is required around that frequency. In this way,
the materials properties can be extracted for all resonance
frequencies of the structure.

IV. MULTILAYERED FINITE DIFFERENCE METHOD

(M-FDM)

A. Single Plane Pairs

The rapid solver cannot be used for planes with arbitrary
structures. Models for such structures can be obtained by an
interconnection of unit cells based on the finite difference
approximation. Via holes or cut-outs in the planes can then
be taken into account by removing the unit cells at those
locations. There are also several unit cell types as shown
in Fig. 4. Note that the impedances shown in the unit-cells
are half of the total impedances between two neighboring
nodes. When unit cells are connected with each other, two half
impedances from neighboring unit cells establish the correct
impedance value. The T-unit cell model is based on a 5-point
approximation of (1), whereas the X-unit cell model can be
obtained from the 9-point finite-difference formula. The T-unit
cell results in the well-known bedspring model for a plane
consisting of inductors (L) between neighboring nodes, and
capacitors (C) from each node to ground. In the figure, the
per unit cell impedance and admittance are represented as

Z = R + jωL (5)

and
Y = G + jωC, (6)

where the per unit cell parameters can be obtained as

C =
εh2

d
(7)

L = µd (8)

R =
2
σt

+ 2

√
jωµ

σ
(9)

G = ωC tan δ, (10)

for a given permittivity ε, permeability µ, conductivity σ,
conductor thickness t, loss tangent tan δ, and cell size h. The
dielectric constant and loss tangent are in general frequency
dependent as discussed in the previous section. Note that R
in (9) represents the internal impedance, including both the dc
and the skin effect resistance, as well as the contribution of
the internal inductance.

The main difference of the X-unit cell is that it includes
a direct inductive path to the diagonally neighboring cells
in addition to the neighboring cells sharing a side. However,
both T- and X-models are second order approximations to the
Helmholtz equation. As a result of this, the improvement in
accuracy using the new X-unit cell is not significant [14]. Since
the well-known T-unit cell based on the 5-point discretization
results in a simpler model, it is going to be used in the
following sections.
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Fig. 4. Unit-cell models for a single plane pair. (a) T-unit cell. (b) X-unit
cell.
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Fig. 5. (a) Geometry and (b) combined T-unit cell model for multilayered
planes (for the example of three planes).

B. Multilayered Planes

The unit cell models shown in Fig. 4 use a common ground
node. In a multilayered structure consisting of more than two
planes, unit cells of different plane pairs can assign this ground
potential to different planes. Therefore, such unit cells cannot
be stacked on top of each other without any modification to
model a multilayered plane, since each unit-cell is modeled
by a grounded n-port. A straightforward stacking would short-
circuit the elements between two ground connections, resulting
in a completely wrong model. As a result, a multilayered unit-
cell model becomes necessary. Such a model can be obtained
using the indefinite admittance matrices of individual unit cell
models [8]. For example, Fig. 5 shows an equivalent circuit
model for a sample unit cell including three planes, where
the bottom plane is chosen as the common reference terminal.
The per unit cell parameters do not always have to be defined
between two adjacent planes. For example, a unit cell can
include inductances and capacitance between distant planes,
if there are slots on the planes between them. The total nodal
admittance matrix can be constructed easily by interconnecting
the resulting unit cells with each other.

C. Fringe and Gap Fields

The formulation discussed in the previous section assumes
that each unit cell sees a plane-pair of infinite extent along
the lateral directions. The formulae used to calculate the
capacitor and inductor elements (7)-(10) are essentially par-
allel plate formulae. However, fringing fields occur at edge
discontinuities. This implies that both the per-unit-length (pul)

Fig. 6. M-FDM including fringe elements

Fig. 7. M-FDM including gap elements

inductance and capacitance will be different from that obtained
from parallel plate formulae. To compensate for this fringe
effect, additonal capacitors and inductors are added around
the edges of the planes as shown in Fig. 6.

The gap effect leads to coupling between physically sepa-
rated metal patches when the distance of separation between
them approaches the dielectric thickness. The coupling can
be especially significant when the patches resonate. Fig. 7
shows two patches separated by a gap. The requirements for
the model are that it should be a lumped network that couples
only the nodes on either side of the slot. The E-field coupling is
represented by a capacitor, Cm, connected between the nodes
that lie across the gap. The H-field coupling is modeled by a
mutual coupling factor, K, as shown in the figure.

The values of the circuit elements for both the fringe and
gap fields can be extracted using closed-form equations [10].

D. Transmission Lines

Striplines are embedded transmission lines between two
planes as shown in Fig. 8(a). Based on modal decomposition
[15], such a stripline can be added into the model of a multiple
plane structure as shown in Fig. 8(b), where the coupling
coefficient can be found as

k = − h1
h1 + h2

. (11)

A microstrip line can be regarded as just a special case of
a stripline, where k = 0 or k = −1 in (11) depending on
whether it is referenced to the voltage reference plane or not.
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Fig. 8. (a) Geometry and, (b) model for a stripline in a multilayered planar
structure

V. NUMERICAL RESULTS

The simulated test case is a mixed signal board with split
planes separating the digital module with an FPGA and an RF
transceiver module. The board layout is shown in Fig. 9(a).
Ports 1 and 2 are placed at the location of the FPGA and
the RF transceiver respectively. Noise generated by the FPGA
can couple through the PDN and cause degradation in the
performance of the RF module. From the insertion loss result
shown in Fig. 9(b), it can be seen that significant coupling
occurs at 2.1, 2.8, 3.5 and 5 GHz. Also, it can be seen that
the results from M-FDM and Sonnet are well correlated. The
time per frequency sample for M-FDM was 3s as compared
to 340s for Sonnet, which represents a speed up of 113X.

VI. CONCLUSION

This paper presented the multilayered finite-difference
method (M-FDM), which can be used for signal and power
integrity analysis of system-on-package applications. M-FDM
extends the standard approach of solving the 2D Helmholtz
equation for power/ground planes to multilayered planar struc-
tures. The accuracy is improved by taking into account the
frequency-dependent behavior of materials properties (that are
obtained using a rapid solver) as well as by considering fringe
and gap fields. For a full signal integrity analysis, the trans-
mission lines are incorporated using the modal decomposition
technique. As a result, frequency responses of multilayered
packages and boards can be obtained efficiently with accuracy
approaching full-wave solvers.
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