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Abstract—The coupling of simultaneous switching noise (SSN) in mixed
signal system on package modules is a critical signal and power integrity
(SI/PI) problem. In the presence of split planes and apertures, SSN
coupling occurs both horizontally as well as vertically across layers. Thus,
to catch SI and PI problems at an early stage of design requires fast
signal and power co-simulation methodologies. In this paper, we outline
the multi-layer finite difference method and how the accuracy of the
technique can be enhanced with models for fringe and gap effects. We
then briefly describe a method for integrating the signal distribution
network with the power distribution network to enable co-simulation.
The method is then applied to a mixed signal board containing split
planes, and numerical results are compared to full-wave simulations.

I. INTRODUCTION

A high performance mixed signal system on package (SoP) module
delivers power to its various components using power/ground planes.
To reduce the parasitics of the power supply, as well as to increase
high frequency decoupling, several power/ground planes can be
arranged in an alternating manner. Signal lines are typically routed
between these plane pairs.

Figure 1 shows a three layer package power distribution network
(PDN) PDN supplying power to a mixed-signal IC. Multiple power
supplies are typically required in modern SoPs due to the various
integrated components. Split planes are required to provide DC
isolation to the different supply voltages. Also, holes are created in
the solid power/ground planes in order to route signals or to provide
via anti-pads. The switching activity of digital circuitry causes a
time varying current to be drawn from its power supply terminals,
Vdd1-Gnd1. Due to the associated inductance of the loop, SSN is
generated. SSN can couple horizontally across a plane pair and across
power islands. Also, SSN couples vertically through vias, and through
apertures. This can be regarded as a coupling by means of a wrap-
around current on the edges of the planes. Through these mechanisms,
ground bounce can occur across the Vdd2-Gnd2 planes.

In packaged mixed-signal SoP-based systems, there are multiple
dissimilar modules in close proximity. In such systems, SSN can
cause degradation of the performance of noise-sensitive RF compo-
nents such as low noise amplifiers. Relatively low levels of coupled
noise (∼ -60 dB insertion loss between digital and RF modules) can
cause significant performance degradation. Thus, it becomes critical
to model split planes and apertures.

Another issue that arises due to the presence of split planes is
that to facilitate communication between modules, signal lines might
have to be routed over a slot. This causes a disruption in the return
current path, which leads to the degradation of signal integrity. One
reason that signal nets are routed between power/ground planes is
that when these planes are solid, they can isolate adjacent signal
layers. However, when apertures are created, this assumption is no

Fig. 1. SSN coupling mechanisms in a realistic package.

longer valid. Thus it becomes critical to co-simulate the signal and
power distribution networks. While full-wave EM simulators are the
most accurate tools to perform these simulations, the high time and
memory complexity involved relegates the use of these tools to final
verification.

A system-level SI/PI co-simulation methodology was proposed
in [10]. A microstrip or stripline mode can be decoupled from
the parallel plate mode using modal decomposition. The signal
distribution network (SDN) and PDN can be analyzed separately and
the results can then be reintegrated [4].

In [1], split planes have been modeled by employing lumped
coupling elements. The values for these elements can be derived from
closed form expressions based on the geometry of the problem. For
narrow apertures, a transmission-line based model has been proposed
to take into account interlayer coupling [8]. Electric and magnetic
polarization currents have also been considered to compute coupling
through electrically small cut-outs [9]. Recently, the multi-layer finite
difference method (M-FDM) has been proposed in [5][3]. To the
best of the authors’ knowledge, M-FDM is the only efficient method
available to analyze such structures with arbitrarily large holes in
the planes.

The rest of the paper is organized as follows. The finite difference
formulation for single plane pair geometries will be discussed in
section 2, and its extension to multiple plane pairs (M-FDM) will
be described in section 3. Addition of fringe and gap effects will
be presented in section 4. The integration of the SDN and the PDN
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using modal decomposition will be discussed in section 5. Results
illustrating the accuracy of the method are shown in section 6, and
conclusions are presented in section 7.

II. M-FDM FOR SINGLE PLANE PAIR GEOMETRIES

The underlying elliptic partial differential equation for the model-
ing of planes is a Helmholtz equation(

∇2
t + k2

)
u = −jωµdJz (1)

where ∇2
t is the transverse Laplace operator parallel to the planar

structures, u is the voltage, d is the distance between the planes, k is
the wave number, and Jz is the current density injected normally to
the planes [11]. The problem definition is completed by assigning
homogenous Neumann boundary conditions, which correspond to
assuming a magnetic wall, or an open circuit, on the periphery of the
planes. One method to solve the Helmholtz equation is by applying
the finite-difference scheme. The 2-dimensional Laplace operator can
be approximated as

∇2
t ui,j =

ui,j+1 + ui+1,j + ui,j−1 + ui−1,j − 4ui,j

h2
(2)

, where h is the mesh length and ui,j is the voltage at node (i,j) for
the cell-centered discretization shown in Figure 2(a).

This discretization results in a well-known bedspring unit cell
model [5] for a plane-pair consisting of inductors (L) between
neighboring nodes, and capacitors (C) from each node to ground.
Figure 2(b) shows the equivalent circuit obtained by discretizing a
plane-pair into unit cells. This equivalent circuit model can be solved
using a standard circuit solver. However, direct solution of the M-
FDM equation using a linear equation solver can improve the memory
requirements and speed, since the resulting admittance matrix is a
sparse banded matrix. Based on the plane model in Figure 2(b), a
linear equation system can be obtained which can be written in matrix
form as:

YŪ = I (3)

where U and I are the cell voltage and current vectors. The matrix Y
is the nodal admittance matrix. If the unit cells are numbered using
natural ordering, Y has the following form:
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(5)

and B = − 1
Z

. Z and Y represent the per-unit-cell impedance and
admittance parameters, given by Z = jωL and Y = jωC. If the
plane pair were to be discretized with M1 cells horizontally and M2

Fig. 2. (a)Discretization of the Laplace operator (b)Electrical model for a
plane-pair.

cells vertically, then the matrix Y is N × N where N = M1M2. If
unit cells are numbered along columns, the bandwidth of Y is M2.
Using a direct solver, the computational complexity for equation 3 is
O(N × M2

2 ). For typical geometries, M1 ≈ M2 ≈ √
N , resulting

in a complexity of O(N2). Also, if sparse storage is used, memory
required is O(N1.5). The method can be further enhanced by the
use of nested dissection, which is an asymptotically optimal node
ordering method. This can improve the flop count to O(N1.5) and
memory to O(N log2

√
N) [6].

III. M-FDM EXTENSION TO INFINITE LAYERS

The unit cell model used in Figure 2 uses a common ground
node. In a multilayered structure consisting of more than two planes,
unit cells of different plane pairs can assign this ground potential to
different planes. Therefore, such unit cells cannot be stacked on top
of each other without any modification to model a multilayered plane.
A straightforward stacking would short-circuit the elements between
two ground connections, resulting in a completely erroneous model.
To obtain a model for the combined unit cell representing all the
planes in the structure, consider the inductor elements in a unit cell
as shown in Figure 3(a). L1 is the per unit cell (p.u.c.) inductance
between plane 1 and plane 2, whereas L2 is the inductance between
plane 2 and 3. Hence, reference planes are different in both models
in Figure 3(b) and L2 would be short-circuited if the same nodes on
plane 2 were connected with each other. In order to avoid that, the
p.u.c. inductances can be combined as shown in Figure 3(c) using a
mutual inductance and assigning plane 3 as the reference plane. This
model can be extended in a similar way to any number of planes.
Physically, this model is based on the fact that there is a complete
coupling of the magnetic field when the return current is on plane 3,
as represented by the mutual inductance that is equal to L2. In terms
of the admittance parameters, this model can be derived using the
indefinite admittance matrix [2]. Following the formulation provided



Fig. 3. (a) Side view of a unit cell for a 3 plane structure showing the current
loops associated with the p.u.c. inductances. (b) P.u.c. inductance of each plane
pair. (c) Combining the p.u.c. inductances by changing the reference planes.

Fig. 4. (a) Geometry and p.u.c. parameters. (b) Combined unit cell model
for three planes. (c) Plane model consisting of multilayer unit cells .

in [5], the total unit cell can be obtained as shown in Figure 4(b)
for the example of three planes, where the bottom plane is chosen
as the voltage reference plane. The equivalent circuit that would be
obtained for a three layer geometry is shown in Figure 4(c).

For solid multilayered rectangular planes, discretized with M1 cells
in the x-direction and with M2 cells in the y-direction, the admittance
matrix Y can be written as

Y =
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(6)

where A =
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and

B =




− ¯̄Z
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−1

uc


 (8)

Here, A and B are kM1×kM1 matrices for (k+1) planes, assuming
that the nodes are numbered starting from the top node in the lowest
row, increasing in the vertical direction to the bottom node, then
starting with the next cell in the x-direction until the last cell, and
then starting with the next row. Hence, Y is a (kM1M2)×(kM1M2)

matrix. The unit cell matrices, ¯̄Y uc and ¯̄Z
−1

uc are tri-diagonal and are
given by
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and
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(10)

where Yi and Zi can be obtained similar to the unit cell parameters
for a single plane pair structure as

Yi = jωCi + ωCi tan δi (11)

Zi = 2jωLi +
2

σt
+ 2

√
jωµ

σ
(12)

By an analysis similar to what was provided in the previous section,
it can be shown that the computational complexity of M-FDM applied



to k + 1 layers is O(N2) where N = (kM1M2). Typically in the
presence of mutual inductor elements such as what has been shown
in Figure 4, the unit cell inductance matrix ¯̄Z

−1

uc will be full-dense.
However, the nature of the loop inductances considered lends to the
tri-diagonal form shown in (10) and hence to the unique advantages
of M-FDM.

IV. INCLUSION OF SECONDARY EFFECTS

A. Fringe Effect Models

The M-FDM formulation discussed in the previous sections as-
sumes that each unit cell sees plane-pairs of infinite extent along the
lateral directions. However, fringing fields occur at edge disconti-
nuities. This implies that both the per-unit-length (p.u.l) inductance
and capacitance will be different from that obtained from parallel
plate formulae. This problem has been considered in [7], which
proposes building a library that maps various geometries to model
elements, and interpolating between these values. However, this
technique requires the development of a large database that accounts
for variations in dielectric height and permittivity, trace width and
metal height, and can suffer from interpolation errors. On the other
hand, the technique proposed in [1] relies on well characterized closed
form expressions which are easy to implement. The fringe fields are

Fig. 5. (a)Geometry (b)Representation with the FDFD model (c)Correction
for fringe effect by addition of elements Cf and Lf (d)Gap model with
addition of gap elements, Cm and K.

corrected by adding additional elements to edges. A microstrip line

of width W , dielectric height h and metal thickness t is shown in
Figure 5(a). The M-FDM model for this microstrip is shown in Figure
5(b). The fringe effect is modeled by the addition of Lf and Cf , as
shown in Figure 5(c), and are given by [1]

Cf =
Cpul − Cpp

2
w (13)

Lf =
2µhwLpul

µh − WLpul
(14)

where, Cpul and Lpul are the p.u.l capacitance and inductance
of a microstrip line of equivalent width, dielectric height h and
permeability µ. Cpp is the p.u.l parallel plate capacitance and w
is the unit cell width.

B. Gap Effect Models

Coupling occurs between physically separated metal patches when
the distance of separation between them approaches the dielectric
thickness. The coupling can be especially significant when the patches
resonate. Figure 5 shows split planes of width W separated by
a spacing s, with a dielectric height h. The gap is modeled by
considering both the E-field and H- field coupling The E-field
coupling is represented by a capacitor, Cm, connected between the
nodes that lie across the gap. The H-field coupling is modeled by a
mutual coupling factor, K, as shown in Figure 5. The values of Cm

and K are obtained by applying coupled line theory as explained in
[1].

The addition of the fringe models do not increase the complexity
of the problem as they represent only a correction to existing circuit
elements. However, the addition of the gap elements will increase
the bandwidth of the admittance matrix, as the width of a split plane
may be discretized by more than one unit cell. However, it is known
that coupling between patches becomes less significant as the ratio of
the gap spacing s to the dielectric height h becomes large, for which
the gap model may not be applied. This allows the computational
complexity of the proposed approach to be maintained at O(N2).

V. INTEGRATION OF THE SDN AND THE PDN

Since separate analyses of the SDN and the PDN fails to account
for the coupling between the two domains, the two responses need
to be integrated to perform an accurate system level analysis. This
integration can be performed using the admittance matrices of the
two modules along with the stamp rule [2]. The process involves
conversion of the SDN response into its equivalent model which is
then stamped onto the admittance matrix of the PDN. This ensures
that all parasitic effects between the PDN and the SDN are accurately
accounted for in the integration process.

For example in a simple microstrip interconnect referenced to non-
ideal power ground planes, since the transmission line and parallel-
plate modes are not coupled, the integration of the SDN and the PDN
responses can be carried out simply by combining the two Y-matrices
as given by 


Ii
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Io
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Ii
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Io
m
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Yp 0
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V i
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V o
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V i
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 (15)

where Yp and Ym are the Y-matrices of the power/ground planes and
the microstrip interconnect (considering ideal reference) respectively,
while I and V are the vectors defining the currents and the voltages at
the input and output ports. However, if the current on the signal line
excites both modes, like in the case of a stripline interconnect ref-
erenced to non-ideal power/ground planes, additional considerations



[3] are required to integrate the SDN and the PDN responses. For
the stripline case, the SDN and the PDN responses can be integrated
as given by 


Ii

p

Io
p

Ii
m

Io
m
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k2Ys + Yp kYs

kYs Ys

)


V i
p

V o
p

V i
m
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 (16)

where Yp and Ys are the Y matrices of the power/ground planes
and the stripline (considering ideal reference) respectively, and k
is a constant determined from the layout. Once the integration is
complete, the line terminations and the other lumped components in
the system can be added to the overall system matrix using the stamp
rule. Since the transient response is often required only at particular
locations in the system, the overall system matrix can be reduced
to include ports only at those locations where the system is being
excited or probed. The reduced system matrix thus obtained is then
used for estimating the port-to-port delays in the system to enforce
causality on the transient response.

VI. RESULTS

The methodology described in prior sections has been imple-
mented in a CAD tool. Simulations were performed to compare the
methodology against full-wave simulations and measurements, and
to demonstrate the scalability of the method. All simulations were
performed on an Intel Xeon workstation with a 3.2 GHz processor
and 3.5 GB of RAM. Full-wave simulations were performed with the
method-of-moments based solver, Sonnet.

A mixed signal board of size 60mm × 34.8 mm is shown in Figure
6(a). A microstrip transmission line originates from an FPGA located
near port 1, and connects to a low noise amplifier (LNA) at port 2.
The microstrip, which is of length 34 mm, traverses over the slot
separating the power islands of the two modules. The dielectric height
between the power/ground planes was 300 µm, and between the
signal and power planes is 200 µm. The dielectric was FR-4 with
εr = 4.4.

This example was simulated in Sonnet as well as M-FDM using
a cell size of 0.3mm. In M-FDM, the PDN was simulated first. The
transmission line was broken into three segments, with the first and
last segment represented by a microstrip referenced to the power
layer. The middle segment represents the section of the microstrip
that is present above the slot and is hence reference to the ground
layer. The results obtained from simulation are shown in Figures
6(b) - (e). Figures 6(b) and (c) show the case when the microstrip
is assumed to be ideal. In this case, there are no discontinuities, and
since the characteristic impedance is ∼ 54Ω, the dB(S12) is very
close to zero. However, when the microstrip is routed over the slot,
the obtained return and insertion loss results are shown in Figures
6(d) and (e). In this case, the insertion loss is significantly higher.

As can be seen from the return loss and the insertion loss results,
we are able to get good correlation between Sonnet and M-FDM.
The Sonnet simulations required 800s per frequency point analyzed,
while in M-FDM required 3.2s per frequency point. This represents a
speedup of about 200X. A 0.4 mm wide microstrip line traversing a
2.5 mm slot in the power plane is shown in Figure 7. The transmission
line in this case is assumed to be an interconnect driven by a 533
MHz DDR II driver. In this case each power island is of size 125
mm × 100 mm. The dielectric height between the microstrip line and
the power plane is 0.2 mm. The dielectric height between the power
and ground planes is 1 mm. A simple rectangular geometry is chosen

Fig. 6. (a)Mixed signal board with transmission line traversing a slot
(b)Return loss results - Ideal Microstrip (c)Insertion loss results - Ideal
Microstrip (d)Return loss results (e) Insertion loss results.

since it is possible to analytically compute the resonant frequencies
using the formula

fcm,n =
1

2π
√

µε

√(
mπ

a

)2

+
(

nπ

b

)2

(17)

where a and b represent the length and width of the rectangular geom-
etry. Given a dielectric constant, εr , of 4.4, the first resonance occurs
at 570 MHz. Figure 8 shows the insertion loss of the transmission
line. It can clearly be seen that the resonance of the planes gives
rise to significant insertion loss (-8dB). A method that can be used



Fig. 7. Top view of test case. Microstrip interconnects ports 1 and 2.
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Fig. 8. Insertion loss results for structure in Figure 7.

to suppress this resonance is by using decoupling capacitors with a
self resonant frequency of around 570 MHz. Two such capacitors
are placed at locations close to the gap as shown in Figure 7. The
parasitic series resistance of the capacitor was 10 mΩ, and its series
inductance was around 0.8 nH. It can be seen from Figure 8 that after
placement of the decaps, the insertion loss is significantly improved.
The simulation time per frequency point using M-FDM was 100 ms,
demonstrating how the method can be employed to efficiently co-
simulate SI/PI problems.

VII. CONCLUSION

The ever increasing integration of package level integration has
given rise to new SI and PI problems that cannot be solved at
present with full-wave simulation tools. This has led to the need
for efficient CAD tools. The multi-layer finite difference method
has been proposed as an accurate and efficient simulation engine
for power distribution networks. The accuracy of the method can
be improved by the inclusion of circuit models for the fringe and
gap effects. Modal decomposition techniques have been employed
to integrate the SDN and PDN to enable SI/PI co-simulation. The
proposed methodology has been applied successfully to a mixed-
signal board with split planes.
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