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Abstract—In this paper, we study the correlation between pass-
words across different datasets which quantitatively explains the
success of existing training-based password cracking techniques.
We also study the correlation between a user’s password and
his/her social profile. This enabled us to develop the first social
profile-aware password strength meter, namely SocialShield.
Our quantification techniques and SocialShield have meaningful
implications to system administrators, users, and researchers,
e.g., helping them quantitatively understand the threats posed
by a password leakage incident, defending against emerging
profile-based password attacks, and facilitating the research of
countermeasures against existing and newly developed training-
based password attacks. We validate our proposed quantification
techniques and SocialShield through extensive experiments by
leveraging real-world leaked passwords. Experimental results
demonstrate that our quantification techniques are accurate in
measuring correlation among different leaked datasets and that
although SocialShield is light-weight, it is effective in defending
against profile-based password attacks.

I. INTRODUCTION

Text based authentication (password for convenience) is
the most widely used user authentication method in modern
computer systems [1]–[5]. Although it has been observed
that passwords have several shortcomings [3], [5]–[8], e.g.,
vulnerable to password cracking attacks, they are likely to
remain as the most dominating means of authentication for
the foreseeable future. This is because passwords have several
important advantages over their alternatives, e.g., scalability,
simplicity, and high performance–price ratio [4].

In the past decade, several powerful password cracking
algorithms have been presented, e.g., Markov model-based
schemes [9]–[11], structure-based schemes [12], [13], John
the Ripper (JtR) [14], and Hashcat [15]. Generally, when
conducting an attack, an adversary employs these cracking
techniques to train a password cracker leveraging some known
passwords (e.g., leaked passwords), and then use the cracker
to generate password guesses to attack the target dataset.
A natural question is what is the underlying reason for the
success of these password cracking techniques? The answer
to this question is that user-chosen passwords (specifically,
those susceptible to training-based password cracking attacks)
are “similar” with respect to password structure and seman-
tics, i.e., passwords exhibit demographic, behavioral, cultural,
lingual, and regional correlations as demonstrated by many

empirical observations [3]–[5], [7], [16]. Therefore, trained
password crackers are powerful in making accurate guesses
when attacking a target password dataset.

Furthermore, recently, it has been shown that users’ social
profiles can be utilized to facilitate the password attacking
process [11]. Leveraging users’ education, address, and other
profile information, a trained Markov model-based cracker can
crack 5% - 30% more passwords [11]. The improvement is due
to the fact that many user-chosen passwords are correlated with
those users’ profile. Thus, users’ profile can be employed to
improve the password cracking process.

Contributions and Implications: Although password
dataset correlation and the correlation between user-chosen
password and his/her social profile have important implica-
tions on password security (e.g., significantly making exist-
ing password systems more vulnerable), to the best of our
knowledge, there is no existing work that has quantitatively
studies these issues. This motivates us to study and quantify
the correlation between password datasets (which we term
as password–password correlation). We also study how one’s
password might be related to one’s social profile (which we
term as password–profile correlation). Such an investigation
quantitatively specifies how a password (dataset) is composi-
tionally, linguistically, and/or semantically correlated to other
passwords and/or users-profile information. Specifically, we
make the following contributions in this paper:

(i) We propose the first password–password correlation
quantification framework, under which we can quantify
structure-based, n-gram–based, and dictionary-based correla-
tion of passwords. Our quantification explains the theoretical
foundation of existing password correlation based observations
[3]–[5], [7], [16] as well as the success of existing training-
based password cracking techniques [9]–[15]. We also exam-
ine the performance of our password–password correlation
quantification via a comprehensive attack-based evaluation
leveraging real-world passwords. The experimental results
demonstrate that our quantification can accurately indicate the
correlation among different password datasets.

(ii) We propose the first password–profile correlation quan-
tification framework, which provides the theoretical foundation
for the success of emerging profile-based password attacks
(e.g., [11], [14]). Based on our password–profile correlation
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quantification, we develop the first light-weight social profile-
aware password strength meter, namely SocialShield. Through
extensive evaluations leveraging real-world passwords and
their profile information, we validate that SocialShield is very
accurate and effective in measuring the password strength in
terms of their associated profile information.

Our correlation quantification techniques and profile-aware
password meter have meaningful implications to password
system administrators, users, and researchers. For system ad-
ministrators, they can employ our password–password correla-
tion quantification techniques to quantitatively understand the
threat to their password datasets caused by the leakage of other
password datasets (which have become common nowadays,
e.g., the recent Gmail password leakage [17] and Yahoo!
password leakage [18]). Furthermore, they can also plug in
our light-weight SocialShield as an add-on to their password
systems to defend against emerging profile-based password
attacks. For users, SocialShield can provide real-time feedback
of the correlation between their chosen passwords and profile
information (information used for registration) which they can
use to improve their password’s resistance against emerging
profile-based password attacks. For researchers, our quantifi-
cation techniques enable them to quantitatively understand
the correlation of passwords and then develop effective coun-
termeasures to defend against existing and newly developed
password attacks.

Roadmap: The rest of this paper is organized as follows.
In Section II, we summarize the related work. In Section III,
we describe the password datasets used in our evaluations.
In Section IV, we propose the password–password correlation
quantification framework along with experimental evaluation
and analysis. In Section V, we present the password–profile
correlation quantification framework, the design of Social-
Shield, and some evaluation results. The limitations and future
work of this work are discussed in Section VI. Finally, we
conclude this paper in Section VII.

II. RELATED WORK

A. Password Measurement

In [19], Weir et al. evaluated testing metrics for password
creation policies by attacking revealed passwords using their
Probabilistic Context-Free Grammar (PCFG) based cracking
algorithm. Another work employing the password cracking
idea to measure password strength is [7], where Kelley et al.
analyzed 12K passwords collected under seven composition
policies via an online study. Komanduri et al. implemented
another tool, namely Telepathwords, to help users create
strong passwords [20]. In [8], Ur et al. studied the effect of
strength meters on password creation. Another work studying
existing password meters is [6], where Carnavalet and Mannan
analyzed 11 commercial meters. To improve the accuracy of
password strength measurement, Castelluccia et al. presented
adaptive password strength meters [10]. In [5], Ma et al.
conducted a study of probabilistic password models. In [21],
[22], Ji et al. conducted a large-scale cracking-based password
security measurement. They also developed an open-source

and modular Password Analysis and Research System (PARS)
in [1], [23].

B. Password Cracking

In [9], Narayanan and Shmatikov proposed to use standard
Markov modeling techniques to dramatically reduce the search
size of password space. In [10], Castelluccia et al. improved
the Markov model proposed in [9]. They proposed to construct
an n-gram based Markov model to generate password guesses.
Dürmuth et al. proposed an improved password cracking
algorithm, namely Ordered Markov ENumerator (OMEN) in
[11], which can make password guesses in the decreasing
order of likelihood. Furthermore, they also extended OMEN to
OMEN+, where users’ social profiles are considered in pass-
word cracking. Taking another approach, Weir et al. proposed
a password cracking algorithm using Probabilistic Context-
Free Grammars (PCFGs) [12]. Veras et al. in [13] proposed an
improved PCFG based password cracking algorithm, denoted
by VCT, where the grammars take into account structures,
syntactics, and semantics of passwords. In [24], Zhang et
al. studied the effect of expired passwords on the security
of current passwords. Another similar scheme is presented in
[25], where Das et al. studied the password reuse problem.

There are also many password cracking tools available,
among which the most popular one is John the Ripper (JtR)
[14]. JtR supports multiple modes: Wordlist mode (JtR-W),
Single mode (JtR-S), Incremental mode (JtR-I), and Markov
mode (JtR-M). In JtR-W, a dictionary and a password hash file
serve as inputs. JtR will try each word in the dictionary as a
seed to perform cracking. In JtR-S, each password hash serves
as an input along with an auxiliary string, e.g., username. Then
JtR-S applies a set of mangling rules to the auxiliary string to
generate password guesses. JtR-I is an intelligent brute force
cracking method. JtR-M is a similar Markov model based
cracking strategy as described in [9].

C. Password Habits

In [26], Florêncio and Herley conducted a large scale study
of web password habits. In [27], Bonneau et al. evaluated two
decades of text-password alternatives. Leveraging the single-
sign-on passwords used by 25K faculty, staff, and students at
CMU, Mazurek et al. measured the password guessability of
university passwords [16]. In [3], Li et al. conduct an empirical
analysis of Chinese web passwords. In [4], Bonneau analyzed
of 70M Yahoo! passwords.

In [28], Bonneau and Schechter challenged the conventional
wisdom that users cannot remember cryptographically-strong
secrets. In [29], Chiasson et al. presented a usability study
of two recent password managers PwdHash and Password
Multiplier.

III. DATASETS

In this section, we briefly describe the leaked password
datasets used for our evaluations. Table I presents the 4
datasets used which consists in total of about 60.5M real-world
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TABLE I
DATASET SUMMARY.

name size unique username email language website type
CSDN 6.4M 4M 3 3 Chinese www.csdn.net programmer

Duduniu 16.1M 10M 3 Chinese www.duduniu.cn Internet Cafe
LinkedIn 5.4M 4.9M English www.linkedin.com social networks
Rockyou 32.6M 14.3M English www.rockyou.com game

passwords and covers several forms of web applications. The
datasets were leaked due to various password leakage incidents
[3], [5], [25]. In Table I, CSDN is a resource sharing website
for programmers; Duduniu is a website of Internet cafe
service softwares; LinkedIn is a social networking service;
and Rockyou is a popular gaming information website.
According to [3], [5], [25], most users of CSDN and Duduniu
are Chinese speaking users, and most users of LinkedIn
and Rockyou are English speaking users. Furthermore, from
Table I, we can also see that some datasets were leaked with
usernames and/or emails, e.g., CSDN, Duduniu.

Standard Datasets: For our following quantification and
evaluation, in order to guarantee fairness and to reduce pos-
sible bias caused by dataset size differences, we randomly
and uniformly sample 3 million unique passwords as a stan-
dard dataset from each original dataset. Consequently, we
obtain 4 standard datasets: CSDN, Duduniu, LinkedIn,
and Rockyou. In the rest of this paper we use the standard
datasets for our evaluations, unless specified otherwise.

Ethical Discussion: Note that all the datasets in Table I
are now publicly available. Further, these datasets have been
extensively used for multi-purpose and meaningful academic
research [3], [5], [11]–[13], [25], [30]. Although these real
world passwords provide valuable resources to researchers,
they were initially leaked illegally. Therefore, in this paper, we
only use these data for research purposes. Rather than causing
additional harm, our research is expected to be helpful to the
community by promoting security awareness of passwords.

IV. PASSWORD CORRELATION: QUANTIFICATION AND
EVALUATION

As observed in [3]–[5], [7], [16], passwords exhibit demo-
graphic, behavioral, cultural, lingual, and regional correlations.
However, all the existing works only show such correlation by
experiments, e.g., the CSDN-trained crackers are more effective
than Rockyou-trained crackers when cracking Duduniu,
since both CSDN and Duduniu are Chinese password datasets
while Rockyou is an English password dataset, and thus
CSDN and Duduniu are more correlated in terms of language,
culture, and behavior. To date, how to quantify the correlation
of two password datasets is still an open problem. We address
this open problem by proposing a password correlation quan-
tification framework, which can quantify the correlation of two
password datasets from multiple perspectives. Leveraging 10
correlation quantification functions developed in this section,
we can conduct structure-based correlation quantification, n-
gram-based correlation quantification, and dictionary-based
correlation quantificationfor two given password datasets.

A. Structure-based Correlation Quantification

Inspired by structure-based password cracking algorithms
like PCFG [12] and VCT [13], we first quantify the correlation
of two password datasets based on their password structural
similarity. Theoretically, one dataset will be more vulnerable
if it is cracked by a structure-based cracking algorithm that is
trained with another structurally similar dataset.

For any password, according to the techniques in [12], it can
be assigned a structure, e.g., ‘$$password123’ has a structure
of S2L8D3 (where L, S, and D represent letters, symbols,
and digits respectively). Let U be the possible password space.
Then, given two password datasets V,W ⊆ U , we use Sv and
Sw to denote the sets of password structures obtained from
passwords in V and W , respectively, i.e. Sv = {sv|sv is a
password structure that appeared in V } and Sw = {sw|sw is
a password structure that appeared in W}. Let S = Sv ∪Sw,
be the union of password structures of V and W , and Γ = |S|.
Furthermore, for si ∈ S (i ∈ [1,Γ]), we define two functions
fvs (si) and fws (si) which are the appearance frequencies of
structure si in V and W , respectively, i.e., the fraction of
passwords having structure si in V and W , respectively. Based
on fvs (·) and fws (·), we define two vectors Vv

s =< fvs (si) >
and Vw

s =< fws (si) > where i = 1, 2, · · · ,Γ.
Now, we are ready to quantify the structural correlation of

V and W by measuring their structural similarity. Mathemat-
ically, the Jaccard index (a.k.a. Jaccard similarity coefficient)
and cosine similarity are two efficient means to measure the
element-wise similarity (i.e., how many common elements)
and distribution similarity (i.e., how similar the elements are
distributed) of two sets, respectively. Therefore, we extend the
traditional Jaccard index and cosine similarity to measure the
structural correlation of V and W with respect to element
similarity and distribution similarity. Formally, the Jaccard
index-based structural correlation of V and W is quantified
as1

ψJ
s (V,W ) =

∑Γ
i=1 min{fvs (si), fws (si)|si ∈ S}∑Γ
i=1 max{fvs (si), fws (si)|si ∈ S}

, (1)

and the cosine similarity-based structural correlation of V and
W is quantified as

ψc
s(V,W ) =

Vv
s •Vw

s

∥ Vv
s ∥ × ∥ Vw

s ∥
. (2)

1Note that, it is possible to design some alternative Jaccard index-based
correlation metric, e.g., the weighted Jaccard index. Also, it is possible to
employ other metrics, e.g., the Chi-squared test, to quantify the element
similarity. Here, the defined Jaccard index based correlation metric is useful
for our purpose. We take the research of further improving this metric as one
of our future research directions.
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From the above quantification, ψJ
s indicates how many com-

mon password structures are shared by two datasets, while ψc
s

indicates how similar the structure distributions of two datasets
are.

B. n-gram-based Correlation Quantification

Inspired by Markov model based cracking algorithms, e.g.,
NS [9], OMEN [11], n-gram [5], [10], we now quantify the
correlation of V and W based on n-grams. Let lv and lw be the
maximum lengths of the passwords in V and W , respectively.
Then, we partition all the passwords in V into n-grams (n =
1, 2, · · · , lv), denoted by Gv = {gv|gv is a gram of some
password in V }. Similarly, we partition all the passwords in
W into n-grams (n = 1, 2, · · · , lw) and denote the set of the
grams as Gw = {gw|gw is a gram of some password in W}.
Let G = Gv ∪ Gw be all the possible grams of the passwords
in V and W , and Λ = |G|. For gi ∈ G (i ∈ [1,Λ]), we define
two functions fvg (gi) and fwg (gi) to indicate the appearance
frequencies of gram gi in V and W , respectively. Then, we can
define two vectors Vv

g =< fvg (gi) > and Vw
g =< fwg (gi) >,

where i = 1, 2, · · · ,Λ.
Similar to the structure-based correlation quantification, we

quantify the n-gram-based correlation of V and W by mea-
suring their n-gram similarity using the Jaccard index and n-
gram distribution similarity using cosine similarity. Formally,
the Jaccard index-based n-gram correlation can be quantified
as

ψJ
g (V,W ) =

∑Λ
i=1 min{fvg (gi), fwg (gi)|gi ∈ G}∑Λ
i=1 max{fvg (gi), fwg (gi)|gi ∈ G}

, (3)

and the cosine similarity-based n-gram correlation can be
quantified as

ψc
g(V,W ) =

Vv
g •Vw

g

∥ Vv
g ∥ × ∥ Vw

g ∥
. (4)

From the above quantification, ψJ
g indicates the common

n-grams shared by the passwords in V and W , while ψc
g

indicates the distribution similarity of the n-grams in the
passwords of V and W . Theoretically, if these two values
are high, the corresponding two datasets are more similar with
respect to n-grams, and thus the Markov model based cracking
algorithms will be more effective in cracking one dataset when
it is trained by the other dataset.

C. Dictionary-based Correlation Quantification

Based on the password cracking results in [3]–[5], the
employed dictionaries can significantly affect the performance
of password cracking algorithms in practice. To understand the
fundamental reason for this fact, we quantify the correlation of
password datasets with respect to dictionaries. Theoretically,
if V and W are highly correlated with respect to a dictionary
D, then V is more vulnerable to password cracking algorithms
that are trained by W and generate guesses leveraging D,
e.g., PCFG [12], VCT [13]. Therefore, we propose to conduct
dictionary-based correlation quantification of two password
datasets.
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Fig. 1. Password correlation quantification.

Now, given two datasets V and W , and a dictionary D,
we can segment the passwords in V and W in terms of
D using the natural language processing based password
segmentation method proposed by Veras et al. in [13]. We
denote the password segmentation results of V and W by
Dv = {dv|dv is a segment of passwords in V with respect to
D} and Dw = {dw|dw is a segment of passwords in W with
respect to D}, respectively. Let D = Dv ∪ Dw and Π = |D|.
Similarly, for di ∈ D (i ∈ [1,Π]), we define two functions
fvd (di) and fwd (di) to indicate the appearance frequencies of
segment di in V and W , respectively. Then, we define two
vectors Vv

d =< fvd (di) > and Vw
d =< fwd (di) > where

i = 1, 2, · · · ,Π.
Similar to the previous quantification techniques, we can

quantify the dictionary-based correlation of V and W by
measuring the element-wise similarity and element distribution
similarity of their dictionary-based segmentation results using
the Jaccard index and cosine similarity, respectively. Formally,
the element similarity of the dictionary-based correlation is
quantified as

ψJ
d (V,W ) =

∑Π
i=1 min{fvd (di), fwd (di)|di ∈ D}∑Π
i=1 max{fvd (di), fwd (di)|di ∈ D}

, (5)

and the element distribution similarity of the dictionary-based
correlation is quantified as

ψc
d(V,W ) =

Vv
d •Vw

d

∥ Vv
d ∥ × ∥ Vw

d ∥
. (6)

Here, ψJ
d measures the common segments shared by two

datasets and ψc
d indicates how similar the two segment dis-

tributions are.
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Fig. 2. Password correlation evaluation: from the attacker’s perspective.

D. Evaluation

1) Structure/n-gram/Dictionary-based Correlation Evalua-
tion: First, we quantitatively examine the structure, n-gram,
and dictionary base correlation of the 4 standard datasets.
When conducting the dictionary-based correlation evaluation,
we employ the combination of the widely used Dic-029 [12],
[13] and Pinyin [3]. The results are shown in Fig.1, where
StrCor, GraCor, and DicCor represent the structure, n-gram,
and dictionary based correlation of two datasets, respectively.
For instance, the n-gram correlation score of LinkedIn and
Rockyou is 0.946 with respect to cosine similarity and is
0.461 with respect to Jaccard index. From Fig.1, we observe
that:

(i) In all the correlation quantification scenarios, CSDN
and Duduniu have higher correlation scores with each other
than with LinkedIn or Rockyou, while LinkedIn and
Rockyou have higher correlation scores with each other than
with CSDN or Duduniu. In other words, CSDN and Duduniu
are more correlated with each other while LinkedIn and
Rockyou are more correlated with each other. This is
because most of the users of CSDN and Duduniu are
Chinese-speaking users while most of the users of LinkedIn
and Rockyou are English-speaking users, and thus CSDN
and Duduniu (similarly, LinkedIn and Rockyou) are
more demographically, behaviorally, and lingually similar.
Our quantification results are consistent with the password
correlation observations in [3]–[5], [7], [16]. Therefore, our
correlation quantification provides the theoretical foundation
of the empirical observations found in [3]–[5], [7], [16]
and enables quantitative measurement of password dataset
correlation.

(ii) Rockyou has higher correlation scores with CSDN
and Duduniu than what LinkedIn has with CSDN and
Duduniu in most of the quantification scenarios. This implies
that Rockyou is more similar with CSDN and Duduniu with
respect to password structure, n-gram, and dictionary com-
pared to LinkedIn’s similarity with CSDN and Duduniu.
According to this fact, theoretically, we can conclude that
the leakage of Rockyou will cause a greater threat to
CSDN and Duduniu than LinkedIn and vice versa, i.e.,
Rockyou-trained password crackers will be more powerful
than LinkedIn-trained crackers when cracking CSDN and
Duduniu. We will validate this assertion in the next section.

2) Attack-based Evaluation: We further validate our pass-
word correlation quantification framework by an attack-based
evaluation. The methodology is that we first employ a pass-
word dataset to train a password cracker; then, we use this
password cracker to attack the other three password datasets.
Intuitively, if the testing dataset is more similar with the
training dataset with respect to structure, n-gram, and/or
dictionary-based segmentation, more passwords of the testing
dataset will be cracked (note that, this is because existing pass-
word cracking techniques are implemented based on password
structure, n-gram, and/or dictionary based segmentation as dis-
cussed in Section II). To conduct a comprehensive attack-based
evaluation, we use the latest password cracking algorithms and
tools: PCFG [12], VCT [13], OEMN [11], and JtR-M [14],
which cover existing structure-based, semantics-based, and
Markov model-based password cracking techniques. For each
password cracking technique that requires a dictionary input,
we use Dic-029 [12], [13] and Pinyin [3]. Furthermore, when
cracking a dataset, we limit each trained cracker to generate
two billion guesses. Note that, it is possible to generate more
guesses. However, two billion is sufficient to validate the
accuracy of our correlation quantification framework. We show
the password cracking results in Fig.2. Comparing the results
of Fig.2 and Fig.1, we have the following observations:

(i) Generally, the quantification results in Fig.1 agree with
the cracking results in Fig.2. If two datasets are highly corre-
lated, a cracking algorithm trained by one dataset will be more
effective when cracking the other dataset. For instance, CSDN
is highly correlated with Duduniu in both cosine similarity-
based and Jaccard index-based correlation quantifications.
Then, from Fig.2 (a) and (b) we see that CSDN can be more
effectively cracked by Duduniu-trained algorithms and vice
versa. For instance, when cracking CSDN, using Duduniu-
trained PCFG, VCT, OMEN, and JtR-M are more powerful
than crackers trained on LinkedIn or Rockyou. Similarly,
Rockyou is more correlated with LinkedIn than other
datasets. Accordingly, from Fig.2 (c) and (d), LinkedIn
is more crackable by Rockyou-trained algorithms and vice
versa. This demonstrates that our quantification can accurately
characterize the correlation of two password datasets, and is
helpful in understanding the security of one password dataset
given another dataset from multiple perspectives.

(ii) According to our quantification results in Fig.1,
Rockyou is more correlated with CSDN and Duduniu
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Fig. 3. Correlation quantification of the cracked passwords by JtR-I (Table
II).

compared to LinkedIn. From Fig.2 (a) and (b), we
can see that Rockyou-trained crackers are more power-
ful than LinkedIn-trained crackers when cracking CSDN
and Duduniu. For instance, when attacking Duduniu,
Rockyou-trained PCFG, VCT, OMEN, and JtR-M can crack
12.2%, 12.9%, 16.7% and 26% of the passwords, respectively,
while the same crackers trained by LinkedIn can crack
11.6%, 12.3%, 14.5%, and 20.9% of the passwords, respec-
tively. This further proves the accuracy of our correlation
quantification framework.

3) Correlation Quantification of Hashed Datasets: Our
quantification technique is also helpful in analyzing the se-
curity of hashed password datasets. Specifically, for future
attack-based password security evaluation, our quantification
is meaningful in guiding the selection of proper training
data and cracking algorithms. When multiple datasets are
available for training, password cracking is more effective if
the training dataset is highly correlated with the target dataset.
For instance, if two datasets are highly structurally correlated,
a structure-based cracking algorithm trained by one dataset is
likely to be more powerful when cracking the other dataset.
So far, based on our discussion, the availability of plain-text
passwords is necessary to conduct structure-based, n-gram-
based, and dictionary-based password correlation quantifica-
tion. Then, a natural question is – when the password datasets
are hashed, how can system administrators evaluate the threat
of leaked datasets on their (hashed) password dataset through
password correlation quantification?

To address this issue and to quantify the correlation of
two hashed password datasets, we employ an attack-based
approach: we use JtR-I (a training-free and intelligent brute-

force password cracking mode of JtR [14]) to attack the two
hashed password datasets and obtain a small portion of cracked
passwords; we then quantify the correlation on the cracked
passwords2.

To validate this attack-based approach, we first use JtR-I
to attack CSDN, Duduniu, LinkedIn, and Rockyou, and
the percentages of cracked passwords are shown in Table II
(the number of guesses is limited to two billion). From Table
II, we see that a considerable portion of each dataset can
be cracked by JtR-I. If we compare the results from Table
II with those in Fig.2, we find that training-based password
crackers are more powerful than the training-free JtR-I in
most scenarios, especially when the training-based crackers
are properly trained. This further demonstrates the importance
of understanding the correlation between passwords. Specifi-
cally, system administrators can evaluate the threat caused by
other password leakage incidents on their password datasets
by quantifying the correlation of their datasets with leaked
datasets (which in practice may be utilized by adversaries to
train a password cracker).

TABLE II
CRACKING RESULTS OF JTR-I.

CSDN Duduniu LinkedIn Rockyou
JtR-I 6.3% 11.7% 17.0% 24.9%

According to the cracked passwords in Table II, we can
quantify the structure-based, n-gram-based, and dictionary-
based correlation of the 4 password datasets and the quan-
titative results are shown in Fig.3, where (a) and (b) show the
cosine similarity-based and Jaccard index-based correlation,
respectively. From Fig.3, we see that the 4 password datasets
exhibit similar correlation distribution to that in Fig.1 even
when we only consider the cracked passwords by JtR-I, i.e.,
we use a small portion of plain-text passwords. This implies
that our quantification technique is stable and accurate even if
the underlying database is small, and thus our quantification
technique in general is applicable in practical scenarios. There-
fore, when we try to quantify the correlation of two hashed
password datasets (or the correlation between one hashed
password dataset and one plain-text password dataset), we can
employ the training-free JtR-I to crack a small portion of the
passwords first and then quantify their correlation using the
cracked passwords.

V. PASSWORD–PROFILE CORRELATION

A. Status Quo and Preliminary Analysis

In Table I, several datasets were leaked with potentially use-
ful auxiliary information. Specifically, CSDN was leaked with
corresponding username and email information and Duduniu
was leaked along with corresponding email information.
Therefore, we take the username and email as auxiliary
information and employ JtR-S to crack CSDN and Duduniu.

2System administrator can use expired user-account passwords instead of
active user passwords for this purpose.
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Surprisingly, we find that 17.2% of CSDN passwords can be
cracked within 1130 guesses based on the associated email
information, 7.4% of CSDN passwords can be cracked within
789 guesses based on the associated username information,
and 33.2% of Duduniu passwords can be cracked within
706 guesses based on the associated email information.

On the other hand, according to our summarization in
Section II, no existing password strength meter comprehen-
sively considers a user’s social profile, e.g., username and
email, when measuring the password strength. Although some
commercial password meters/checkers (14 out of the top 150
ranked sites by http://www.alexa.com/) do reject a
password that is exactly the same as the username or that
contains the username as a substring, they do little to prevent
users from selecting social profile-related passwords. This is
because they can be easily bypassed with a password that
is constructed by appending a number to the username or
changing one character in the username.

Furthermore, instead of being related to usernames/emails,
user-chosen passwords may be related to other forms of social
profiles, which cannot be detected by these meters. As demon-
strated in a recent study [11], the password cracking process
can be accelerated and improved by leveraging user profile
information (about 5% - 30% more passwords can be cracked
leveraging users’ social profile information). Therefore, to
protect user-chosen passwords and to understand the security
of passwords given users’ social profiles, it is important to
use password–profile correlation quantification techniques to
develop Social Profile-aware Strength Meters (SPSMs) in the
near future.

Leveraging our password–profile correlation quantification
technique, system administrators and users can understand
the impacts of social profiles (which are widely and easily
available by crawling online social networks, data mining
applications, etc. [11]) on password security. Furthermore, by
developing a social profile-aware password strength meter, the
password–profile correlation score (an indicator of the threat
posed by a user’s profile) can be provided to users in real-time
during the registration process, which can help them choose
more secure passwords.

B. Social Profile-aware Password Meter

1) Challenges and Solutions: When leveraging social pro-
file information to improve password cracking, an algorithm
such as JtR-S, OMEN+, actually exploits the structure, n-
gram, and/or dictionary based similarity between a user’s so-
cial profile and the user’s chosen password. Therefore, inspired
by the design idea of existing attack-based academic meters,
we develop a SPSM, named SocialShield, that quantifies the
correlation between a user-chosen password and that user’s
social profile. If a user-chosen password is highly correlated
with his/her profile (e.g., username, email, education, address,
and other social information), a high Social Profile Correlation
Score (SPCS) (with value in [0, 1]) will be assigned to that
password, implying that the password is more vulnerable to
a social profile-aware cracking algorithm. However, we have

two challenges in implementing SocialShield: First, the base
data is small. The available data consists of one password
and a limited amount of social information, e.g., username,
email. Therefore, it is a challenge to accurately measure the
correlation between the password and the corresponding social
profile. Second, even if we have enough base data, how should
the correlation/similarity be quantified.

To address the first challenge, we employ mangling and
transformation techniques, which is inspired by existing pass-
word cracking schemes. In existing cracking schemes, pass-
word guesses are generated through mangling rules and trans-
formation rules [14], [24], [25], e.g., “password” may be man-
gled/transformed to “pa$$word”, “password1”, “Password”,
“1password”, “pass word”, “Tompassword”, etc. Therefore,
we take a similar idea to pre-process the password and the
corresponding social profile to enlarge the base data for
correlation quantification. Let ζ be the input password and Ω
be the set of available social profile information. To address
the first challenge, we apply the mangling and transformation
rules proposed in [24], [25] to both ζ and each element in
Ω to generate two sets of base data, denoted by P = {π|π
is a transformed/mangled data item generated from ζ} and
S = {ξ|ξ is a transformed/mangled data item generated from
one item in Ω}, respectively. Then, we define the SPCS of ζ
and Ω as the correlation between P and S.

Since we have two sets of based data, to address the
second challenge, we can employ our password correlation
quantification framework described in Section IV to measure
the structure-based, n-gram-based, and/or dictionary-based
correlation between P and S (assuming P and S are two
password datasets).

2) SocialShield Design: SocialShield’s design is shown in
Fig.4, which consists of four steps: (1) a user enters his/her
profile information (such as email and username) and the
chooses a password; (2) the password-base dataset and the
profile-base dataset are generated from the user-input pass-
word and profile information (information entered during the
registration process) by applying mangling and transformation
rules from [24], [25]; (3) the password–profile correlation is
quantified by applying our quantification techniques proposed
in Section IV; and (4) the generated password–profile corre-
lation score (SPCS) is provided to the user.

Note that, after applying the mangling and transformation
rules, the password/profile based dataset usually consists of
tens or hundreds of data items according to our experiments
(more details in next section). Therefore, SocialShield can
quantify the password–profile correlation and provide users
with the SPCS in real-time. Furthermore, considering that
existing academic/commercial password strength meters do
not take into account the security impacts of social pro-
files, they cannot effectively defend against emerging social
profile-based password cracking techniques (as we analyzed
in Section V-A). Therefore, as the first countermeasure of
its sort, SocialShield can serve as a light-weight add-on to
existing academic/commercial password strength meters that
can defend against emerging social profile-based password
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Fig. 4. Architecture of SocialShield.

attacks as shown in the following subsection.

C. Evaluation

In this subsection, we examine the effectiveness of So-
cialShield in terms of an attack-based evaluation. As we
demonstrated before, a significant number of passwords in
CSDN and Duduniu can be cracked by JtR-S based on the
associated email/username information. Based on this ground
truth, we evaluate the performance of SocialShield. Here, for
the correlation quantification phase of SocialShield (step 3 in
Fig.4), we employ the n-gram-based correlation quantification
framework (from Section IV) as an example to compute the
SPCS of P and S.

First, we use SocialShield to measure the SPCS of each
password in CSDN and Duduniu with respect to the associ-
ated email/username. The distribution of the results is shown
in Fig.5 (a), where we equally partition the entire correlation
score domain [0, 1] into ten windows (each window has a
length of 0.1), i.e., for each Wi (0 ≤ i ≤ 9), it corresponds
to the range [ i

10 ,
i
10 + 0.1]. We further employ JtR-S to crack

the passwords in each window based on their email/username
information. The fraction of passwords that are cracked in each
window is shown in Fig.5 (b).

From Fig.5 (a), most passwords have their SPCSs in W0

(i.e., [0, 0.1]) (88.72% of CSDN passwords with respect to the
email information, 85.47% of CSDN passwords with respect
to the username information, and 76.45% of Duduniu pass-
words with respect to the email information), which implies
that they are minimally correlated with their corresponding
emails/usernames. Compared to CSDN, Duduniu has more
email-aware SPCSs in W9 (10.61% of all the Duduniu
passwords). Therefore, compared to CSDN, the passwords of
Duduniu are more correlated with their email information.
Further, for the passwords of CSDN in W9, they are more
correlated with their corresponding usernames (3.2%) than
with their corresponding emails (1.8%).

From Fig.5 (b), (1) with the increase of SPCS, more
passwords become crackable based on their associated social
information. For instance, in W9, 75.2% to 79.2% of CSDN
passwords and 92.8% of Duduniu passwords can be cracked

using the associated email/username information. On the other
hand, in W0, only 0.1% to 0.3% of CSDN passwords and
0.7% of Duduniu passwords can be cracked (for the cracked
passwords in W0, although they are less correlated with the
associated profile information, they are more likely to be weak
passwords like “123456”, “password123” and hence easily
guessable). Therefore, if the passwords are labeled as more
correlated with their social profiles by SocialShield, they are
more likely to be crackable; and (2) Based on the results in
Fig.5 (a), passwords in Duduniu are more correlated with
its email information, and thus it is more crackable based on
the email information as shown in Fig.5 (b). Furthermore, the
CSDN passwords are more guessable based on the username
information in the windows where they are more correlated
with their username (e.g., W9). Therefore, the attack-based
evaluation results validate that SocialShield is accurate and
effective in measuring the strength of passwords with respect
to their social profiles.

In summary, although SocialShield is a light-weight im-
plementation, it is very accurate and effective in measuring
the strength of passwords given users’ profile information.
Therefore, SocialShield can serve as an add-on to existing
academic and commercial meters. Furthermore, the design
of SocialShield can shed light on developing powerful social
profile-aware password strength meters in the future.

VI. LIMITATION AND FUTURE WORK

A. Limitation

When evaluating SocialShield, the employed profile infor-
mation is username and email address. Although SocialShield
is capable of quantifying the correlation between a user-chosen
password and that user’s other profile information such as
education, company, phone number and address, we did not
conduct such evaluation due to the lack of real-word data. It
would be possible for us to crawl users’ profiles online using
the email information in CSDN and Duduniu. However, that
will raise legal concerns.

B. Future Work

The future research work of this paper includes: (1) In our
password–password and password–profile correlation quantifi-
cation, we did not take into account the semantic information
carried by passwords/profiles. In the future, we will improve
the quantification accuracy by incorporating the semantic
information of passwords/profiles. (2) To further evaluate the
performance of SocialShield, we will try to collect more pass-
words along with social information. Furthermore, it would be
meaningful to conduct a user study on the performance and
usability of SocialShield. (3) We will implement SocialShield
in a real password system (e.g., our university’s password
system) and evaluate its practical performance.

VII. CONCLUSION

In this paper, (1) we propose the first password–password
correlation quantification framework, which enabled us to
quantify the correlation between password datasets in terms
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Fig. 5. SocialShield evaluation.

of structure, n-gram, and dictionary (words).Theoretically, our
quantification results explain the success of existing training-
based password cracking techniques. Leveraging an attack-
based evaluation, our password–password correlation quan-
tification is demonstrated to be accurate; (2) we propose the
first password–profile correlation quantification framework,
which explains the success of emerging profile-based pass-
word attacks. Furthermore, based on our quantification, we
develop the first social profile-aware password strength meter,
namely SocialShield. By experiments, we demonstrate that
SocialShield is a light-weight, yet effective means to defend
users against profile-based password attacks. The developed
correlation quantification techniques and SocialShield have
meaningful implications to password system administrators,
users, and researchers in helping them understand the threats
posed by leaked passwords and profile information.

ACKNOWLEDGMENT

This work was partly supported by the Provincial Key
Research and Development Program of Zhejiang under No.
2016C01G2010916 and by the CCF-Tencent Open Research
Fund under No. CCF-Tecent AGR20160109.

Shouling Ji is the corresponding author of this paper.

REFERENCES

[1] S. Ji, S. Yang, T. Wang, C. Liu, W.-H. Lee, and R. Beyah. Pars:
A uniform and open-source password analysis and research system.
ACSAC, 2015.

[2] S. Yang, S. Ji, X. Hu, and R. Beyah. Effectiveness and soundness of
commercial password strength meters. NDSS poster session, 2015.

[3] Z. Li, W. Han, and W. Xu. A large-scale empirical analysis on chinese
web passwords. Usenix Security, 2014.

[4] J. Bonneau. The science of guessing: Analyzing an anonymized corpus
of 70 million passwords. S&P, 2012.

[5] J. Ma, W. Yang, M. Luo, and N. Li. A study of probilistic password
models. S&P, 2014.

[6] X. C. Carnavalet and M. Mannan. From very weak to very strong:
Analyzing password-strength meters. NDSS, 2014.

[7] P. G. Kelley, S. Komanduri, M. L. Mazurek, R. Shay, T. Vidas, L. Bauer,
N. Christin, L. F. Cranor, and J. López. Guess again (and again and
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