
Information Leakage in Encrypted IP Video Traffic

Chris Wampler∗, Selcuk Uluagac†, and Raheem Beyah∗

∗School of Electrical and Computer Engineering †Electrical and Computer Engineering Department

Georgia Institute of Technology Florida International University

Atlanta, GA 30313, USA Miami, FL 33074, USA

emails: wampler.chris@gatech.edu, rbeyah@ece.gatech.edu email: suluagac@fiu.edu

Abstract—Voice chat and conferencing services may be as-
sumed to be private and secure because of strong encryption
algorithms applied to the video stream. We show that infor-
mation leakage is occurring in video over IP traffic, including
for encrypted payloads. It is possible to detect motion and
scene changes, such as a person standing up or walking past
a camera streaming live video. We accomplish this through
analysis of network traffic metadata including arrival time
between packets, packet sizes, and video stream bandwidth.
Event detection through metadata analysis is possible even when
common encryption techniques are applied to the video stream
such as SSL or AES. We have observed information leakage
across multiple codes and cameras. Through measurements of
the x264 codec, we establish a basis for detectability of events
via packet timing. Our laboratory experiments confirm that this
event detection is possible and repeatable with commercial video
streaming software.

Index Terms—Information Leakage, IP Video Traffic

I. INTRODUCTION

Video streaming services continue to expand into wider

audiences with personal chat applications, work from home

interactions, and teleconferencing including both commercial

and government use. The need to ensure the security of

these communications becomes vital as the cost of data loss

increases. Our investigation in this work explores a potential

avenue of attack against streaming video through network

traffic analysis (NTA).

We have been able to demonstrate that information leakage

occurs in encrypted video over IP traffic. Across a range of

codecs tested (i.e., MJPEG, H.264, VP8), it is possible to

detect events such as a person standing up or walking past

a camera streaming live video, through NTA. Our inspiration

for this work stems from the voice over IP work by Wright et

al. [1], who detected spoken phrases through analysis of audio

network traffic. We extend this concept into the video domain

by establishing the basis for information leakage in streaming

video and performing several experiments to quantify what

types of events are detectable.

We found that variations in packet size and arrival time

could indicate activity in a video stream and tested what

types of events are detectable with a variety of codecs,

cameras, and processing hardware. We focused particularly

on the H.264 codec both in the Skype peer-to-peer video chat

network [2] [3] and the open source x264 video encoder [4]

implementations. We demonstrate the link between varying

encoding times based on events being encoded and the re-

sulting variation in packet arrival times by collecting timing

measurements from the x264 encoder. We then establish the

repeatability and consistency of measurements for a single

camera and computer in a laboratory environment. To the best

of our knowledge, this is the first work to analyze information

leakage in encrypted video traffic.

The remainder of this paper is organized as follows. In

Section II, we give a background of relevant information

for video capture and encoding. We discuss related work in

Section III. channel attacks. Our original tests showing event

detection in a variety of codecs are documented in Section IV.

We give evidence for our encoder performance theory through

time stamps added within x264 encoder in Section V. In

Section VI, we demonstrate repeatability of event detection in

a laboratory environment with Skype’s H.264 codec. Finally,

in Section VII we conclude with the results of our research

and future work.

II. BACKGROUND - VIDEO ENCODING

This section mentions some of the video encoding back-

ground relevant to this research as some understanding of

video encoding and image processing is necessary to appreci-

ate the context of the work. More detailed information can be

obtained from [5], [6].

Video encoding begins with a raw image capture from a

camera. The camera converts analog signals generated from

striking photons into a digital image format. Video is simply

a series of such images generally captured 5 to 30 times per

second (referred to as frames per second or FPS). The stream

of raw digital data is then presented to a video encoder.

Fig. 1: Temporal compression with I, P, and B frames.

A video encoder is a set of algorithms which recognizes

patterns within, and possibly between, frames in order to

compress a video stream. Figure 1 demonstrates how tem-

poral video compression compares content from a group of

sequential pictures to achieve a higher compression ratio



2

using I, P, and B frames. Output from the encoder is in a

standardized format which can be parsed and decompressed

by a decoder for playback. There are many types of video

encoding algorithms and as long as the output format is obeyed

each algorithm can be implemented in a variety of ways.

Video is generally captured and encoded few times and

is then stored, transmitted and played back many times. For

this reason encoding algorithms are generally designed with

greater complexity such that decoding hardware and software

can be produced more cheaply. During the encoding process,

images may be encrypted using a variety of algorithms. Of

particular relevance to this work, the encoded and possibly

encrypted data, can then be transmitted over a network.

Many encoders (e.g. H.264) are capable of processing and

transmitting in real time.

III. RELATED WORK

Related and inspiring research by Wright et al. [1] investi-

gates the ability to decode spoken phrases from voice over IP

(VoIP) traffic. Video over IP transmissions are similar to VoIP

in that IP traffic is expected to traverse untrusted domains.

For this reason video and voice only chats are both encrypted

in an attempt to prevent eavesdropping by an adversary. It

was found, however, that due to the nature of the spoken

word and common audio encoding techniques, current VoIP

encryption practices are insufficient [1]. Wright et al. showed

that through their techniques, it is possible to identify a specific

spoken phrase from encrypted VoIP traffic with accuracies

exceeding 50%. Due to the differences between video and

voice traffic, our work focuses on identifying the leakage in

video over IP. Through analysis of network traffic metadata

such as packet size, inter-arrival time, and overall stream

bandwidth, we see that information is being leaked. Similar

to VoIP, the commonly used encryption techniques for video

over IP do not pad or attempt to obfuscate the size or timing

of their input data, leaving all of these metrics available for

exploitation.

Another body of relevant work for our research is side-

channel attacks. Side-channel attacks exploit predictability in

the operation or output of cryptographic algorithms. This

predictability allows an adversary to learn something about

the plaintext or key without actually deciphering it. Early

side-channel attacks allowed an eavesdropper to monitoring

electromagnetic emissions from a computer monitor to de-

termine what was being displayed [7]. Recently it has been

demonstrated that using an iPhone’s accelerometer, an attacker

can determine passwords being entered on a nearby key-

board [8]. Other side-channel attacks exploit side effects of the

encryption process and have even been used for encryption key

retrieval. For example, a timing or power monitoring attack

takes advantage of the differing complexity required to process

a zero or one bit in a key. Variations in power consumption and

execution time result from an effort to optimize performance

in these areas [9]. Most optimizations, in both hardware and

software, which allow an operation to complete more quickly,

when possible, are preferable. This results in higher throughput

and lower power consumption. However, when the difference

in processing time and power use for processing a zero bit in

an encryption key is significantly different than for processing

a one bit, those optimizations can be taken advantage of

to reveal the bits contained in the key itself. Kocher [10]

demonstrated that this type of attack was possible against RSA

decryption keys. Brumley [9] extended this work showing that

timing attacks can even be executed remotely.

Our work does not attempt to reveal the original content of

transmitted video, but instead uses NTA to show that there is a

predictable network traffic response when events occur in view

of a camera transmitting live video. Dyer et al. [11] discusses

methods used to prevent identification of websites visited by

a user through NTA. Their work stipulates that that there are

no efficient countermeasures to side-channel traffic analysis

for website identification. We demonstrate that side-channel

attacks are possible against live video over IP transmissions

and show what types of analysis reveal information about the

encrypted content.

IV. EXPERIMENTATION

This section details the experiments we performed to deter-

mine to what extent information leakage is occurring in live

video streaming.

A. Automated Test Environment

Our initial experimentation aimed to produce the same

phenomena observed in the previous VoIP work and determine

both what types of events could be detected and what factors

impacted the ability to detect recorded events in NTA.

In order to improve the ability to tune detection algorithms

and understand how various types of events appeared in

the network traffic, we utilized Python’s Pcapy interface as

it allows real time processing in lieu of a post-processing

technique such as SharkTools [12]. Pcapy essentially wraps the

libpcap library making live packet capture data, equivalent to

that obtainable through Wireshark, available in a programming

environment. Through use of Pcapy and Python’s interface to

MatPlotLib, real time graphs of network traffic statistics could

be plotted and inspected for indication of events. This is the

method used to obtain the captures shown in Figures 3 and 4.

With a software framework for inspecting live packet cap-

ture data established, the next step in experimentation was

to create an environment where reproducible video captures

could be performed. A small radio frequency isolation cham-

ber was re-purposed as a light box where cameras could

observe a subject in a controlled environment as shown

in Figure 2. Using an Arduino micro-controller board with

pulse width modulating outputs, several servos could be pro-

grammatically controlled through a serial connection. After

creating a simple command interface to the Arduino, single

key commands could be used to control the movement of a

simple vehicle and analog dimming switch.

Each component of the test environment is labeled in

Figure 2: (a), is a D-Link DCS-932L security camera which

is configured for our tests to produce standard definition



3

Fig. 2: Light box for controlled test environment.

(640x480 resolution) MJPEG video; (b), is a Logitech c615

web camera which captures raw high definition video at

1920x1080 resolution; (c), is an incandescent lighting source;

(d), is an analog dimmer switch with an attached servo that

allows light intensity in the test environment to be increased or

decreased to arbitrary brightness; (e), shows the forward and

backward path of motion for the test vehicle; finally, (f), is a

pivoting arm which can be rotated left or right at a controlled

speed. The combination of forward and backward motion with

left to right movement is designed to simulate fast and slow

objects of varying size moving past the camera at varying,

but reproducible rates. When the chamber door is closed all

light observed by the cameras in the environment is regulated.

Not visible in this figure is a software controlled power switch

which allows immediate switching from full brightness to no

light and back as would be encountered when a light was

switched on or off in a dark room.

B. Event Detection Across Multiple Codecs

Using this test environment, we observed network traffic

graphs as video was transmitted using each of the cameras

as well as through multiple encoding applications. For the

security camera, which contains its own network interface,

the traffic was transmitted directly from the device to the

capturing computer platform through a single hop over a local

area network. For the video chat applications, a USB webcam

was connected to a second computer. Both the transmit and

receive computers required an Internet connection in order to

log into video chat services, but both Google Hangouts and

Skype established a direct connection across the local building

network once the connection was negotiated.

We verified that video transmission of a still scene yielded

a stable measurement of packet average inter-arrival times

(IAT) regardless of the camera or encoding application. Some

variation from this stable level was observed at the beginning

of the transmission, but after five seconds of capture average

IAT measurements would level out under any of our capture

methods. This stable rate varied between video sources, but

is shown in Figures 3 and 4 as approximately 7500 µs.

The MJPEG video from the D-Link camera was the most

consistent in video transmission measurements with a similar

measurement of IAT and bandwidth between measurements

made on separate days. The video chat services, however,

seemed to negotiate a different bit rate each time a new chat

was started. This is consistent with our understanding of H.264

and video chat protocols. In order to ensure the best quality

of service for a variety of users, an original video connection

was made at a lower bit rate in order to ensure that that the

call can be established. Once the connection is stable and

there is no measurement of dropped packets or other factors

limiting video quality, the protocol will attempt to negotiate

a transition to a higher bit rate that is capable of providing

a better picture to the user. Across multiple connections, we

generally observed a traffic signature similar to that shown

in Figure 3, but for connections originating from an outside

network or for more congested local traffic conditions, the

measurements would vary.

For each connection type, once a stable connection was

established, the average inter-arrival time, packet sizes, and

connection bandwidth varied little over time for a still scene.

Once a stable connection was observed we would then initiate

events by repositioning the test vehicle or changing the lighting

conditions. By positioning the test vehicle close to the camera

(a few inches away) and moving the arm in the field of view

we could simulate a large object moving. Under good lighting

conditions and with a perceived large object moving, we could

observe the change in network traffic both from the Skype and

Google applications. We did not see any noticeable change

from the D-Link, but this is consistent with our understanding

of the codecs.

For MJPEG, which does not take advantage of temporal

compression, every frame is transmitted in its entirety. The

images are compressed, but for an object that moves within the

image where the background is uniform there is no significant

change expected in the compressibility of the image. Thus,

traffic measurements remain constant through the time frame

of the motion.

For Skype’s H.264 encoding, as shown in Figure 3, as well

as for Google’s VP8 encoding, no figure shown, we do observe

this motion reflected in network traffic measurements. Most

significantly, the average inter-arrival time of packets increases

consistent with a short delay in transmission of the packets

for the frame containing motion. This is again consistent

with our understanding of the H.264 and VP8 codecs which

do take advantage of temporal compression techniques. We

discuss this phenomenon in greater detail in Section V but,

conceptually, for a still scene the encoder can transmit a delta

of the previous frame which is essentially identical to itself.

Thus the computation needed to encode the new information

is reduced, and the quantity of information that must be sent is

similarly small. When motion is added to a scene, more time

is required to compute the new encoding; during this time no

new information is sent. The delay is short enough not to be

noticed by a human observer but stands out in measurements

accurate to the microsecond level. This appears as an increase

in packet inter-arrival time, a decrease in average packet size

during that gap, and a corresponding drop in the closely related



4

connection bandwidth measurement.

Fig. 3: Skype network capture marking time of object passed

in front of camera.

Fig. 4: D-Link network capture marking time when lights are

turned off then on again.

Variations in the size and speed of the moving object were

observed in NTA, but not with a linear relation to movement

itself. When moving the test vehicle to the farthest position

from the camera, most movements of the arm were not

observable. It is expected that at that distance the moving

object occupied such a small portion of the image as to be

negligible in comparison to other noise factors. Also, in other

experiments outside the light-box, a more dramatic change in

the scene, which completely changed the scene content in a

short time frame, would register as a large anomaly in the

IAT of packets. For example, this would occur each time we

opened the door to the light box.

Another significant factor observed in the measurements

was the quality and intensity of lighting in the scene. In a

very dim scene, even a large object’s motion did not register

in traffic measurements. Objects observed under low light lose

color content and with low light the contrast between objects

is reduced. This reduces the complexity of the scene and

corresponding encoding effort. It follows that, if it is difficult

to detect a moving object visually, it will be even more difficult

to observe that change in the network traffic.

Correspondingly, dramatic changes in lighting were found

to be very observable in network traffic and not only for

the H.264 codec but also for MJPEG. Figure 4 shows a

network capture from the D-Link camera’s MJPEG video

which demonstrates a dramatic change in all three of the

metrics. At the time indicated by the dashed red line on the

left, the lights in the test environment were turned quickly off

and then back on again approximately 5 seconds later.

Similar reactions were observed for both the Skype and

Google Hangouts recordings where changes in arrival time,

packet size, and bandwidth all corresponded with the same

moment that the light in the room was turned off and then

back on again. The specific reason for the changes in network

traffic between the different types of codecs is expected to

be different, but the base understanding of how each of the

codecs works is consistent with the network traffic analyzed.

For MJPEG video, the dramatic change in the complexity

and resulting compressibility of the captured image, based on

brightness, would change the size of the transmitted frames

and appear as a change in both packet size and bandwidth.

The specific reasons for changes in inter-arrival time for an

MJPEG codec are still uncertain, but could be a result of the

codec vendor implementation that slows down traffic when

there are only black frames to transmit.

For the Skype and Google applications, a change in inter-

arrival time seems to be consistent with a change in frame rate.

For low complexity frames with similar content, the frame rate

was dramatically decreased. This is expected to be in relation

to a conservation of network bandwidth where there would

be almost identical frames transmitted. If this were detected,

the frame rate could be significantly decreased while still

presenting a good representation of recorded activity to the

end user. In all three cases, the decrease in complexity of the

image would result in higher compressibility and decreased

bandwidth utilization. This would vary based on how much

change in light there was. In our test setup as we varied the

light in small increments, there was not generally any dramatic

change in the network traffic. If the light were only slightly

dimmed in the test setup, or in a real world case if the light

in a room slowly dimmed as the sun set, there would be no

immediate indication of an event occurring, but the overall

change would be measurable as the bandwidth transitioned

from a high to a low state.

TABLE I: Test cases and detection methods.

Source Codec Detection Method Encry-

Small Lights Small Scene ption

Light On/Off Motion Content
Changes Change

D-Link MJPEG A/B A/B B B None
Skype H.264 - A/B A/B A/B AES
x264 H.264 - A/B A A None
Hangouts VP8 A/B A/B A/B A/B SSL
WebRTC VP8 - A/B A A SSL

A - Average Inter-arrival Time B - Bandwidth

Table I summarizes several video applications that were



5

tested. For each source we show the corresponding video

encoding standard implemented by that application, effective

methods for detecting various types of events, and by which

metric they were detectable. Light intensity changes were

detectable both through changes in the IAT of packets as

well as bandwidth. These indicators were less well defined

in the case of Skype traffic. Small changes in light intensity

were observable in all of the codecs except Skype. Dramatic

changes such as lights off to on were observable in all codecs

tested. Motion is detectable through the IAT of packets for

all but the MJPEG codec. For each codec where motion was

detectable, a variable frame rate is supported and is expected

to be the source of the IAT change. Even with MJPEG, a

dramatic change in observed content – such as a complete

background change or a large subject matter change as in a

person occupying most of the frame moving out of view –

would be observable, but this is more of a representation of

change in image content compressibility than of motion itself.

For the other codecs, smaller moments such as a hand wave

or adjustment in sitting position could be observed through

NTA.

It is again noteworthy that three applications noted in Table I

used some form of encryption, and while the content of each

individual frame observed is not decipherable, correlation can

still be made between the images and events transmitted and

the network traffic metrics indicated.

V. ENCODER TIMING ANALYSIS OF X264

To better understand the relationship between an encoder

software implementation and the resulting network traffic

signature, we measured the time required to encode frames

compared to the resulting network packet arrival times. We

chose to make our measurements for the x264 [4] open source

implementation of the H.264 codec. This is the same codec

standard used by the Skype application, and while the specific

implementation of the standard is expected to be very different

between the two software packages, the types of algorithms

necessary to produce a video stream for each application

are expected to be similar. Details for how we obtained

our measurements are given in the Appendix. We show in

this section the correlation between those measurements and

corresponding network packet arrival times.

In Figure 5 we show the close connection between frame

encoding and network packet arrival times. The topmost panel

shows timing measurements of the encode function which

demonstrates that time elapsed between calls to encode each

frame is driven by the time required to complete the encoding

of the corresponding frame at the host machine. The y-axis

shows time measured in milliseconds while the x-axis indi-

cates the frame number processed in the call to the encoder.

In this test over 350 frames were encoded, each by a single

call to the encode function.

The plot shows four spikes above 200 ms around frame

numbers 75, 150, 200, and 300 as well as a smooth area in

the measurements from frame 200 to 300. These features cor-

respond to events occurring in view of the camera during the

Fig. 5: Open source x264 encoder performance profiling.

encoding process. While sitting in front of a camera a subject

passed their hand through the field of view approximately two

feet from the lens corresponding with frame 75. This action

was intended to affect approximately 50% of pixels in the

frame. The spike at frame 150 corresponds to passing of the

hand through the field of view approximately two inches from

the lens. This causes the entire field of view to change as the

hand enters and exits the frame. Starting at frame 200, the

camera is completely covered to block any light and remains

covered until approximately frame 300 where the camera is

uncovered again. At other times during the test the subject sat

motionless several feet from the camera.

We see from these results that the time required to encode a

frame varies dramatically based on the motion and brightness

of the scene in question. As an aid, the second panel shows

the effective frames per second (fps) processed by the encoder.

This is computed as the inverse of the time between encode

calls from the first panel. The frame rate is fairly stable around

15 fps except when activity occurs. This is despite the target

specification of 30 fps given in the pipeline description. We

also observe that the x264 encoder is allowing a variable frame

rate which has an upper limit bounded by the processing time

for each frame. For the introduction of a moving object, which

adds complexity to the encode operation, the frame rate drops

momentarily. While covering the camera the frame rate is able

to stabilize with the decreased complexity of processing an

unchanging black image.

The bottom two sub-figures change the x-axis from frame

number to a linear time scale in seconds. This is done by

averaging data within a 250 ms window to create each point

on the graph which is then smoothed to reduce noise. We see

a correlation between the frame encode times and the network

packet inter-arrival times consistent with the understanding

that the encode time is related to the presence or absence of

activity during the frame. When an event occurs, it causes the

encoding to complete faster or slower; packets are then trans-



6

Fig. 6: Laboratory environment captures showing repeatability of measurements.

mitted immediately following encoding completion. Assuming

consistent latency between packets, variations in packet arrival

times correspond with events captured by the camera.

VI. SKYPE’S H.264 ENCODER

Although previous tests had shown that we could detect

events in several types of codecs, our next step involved verify-

ing the repeatability of tests on a single application. In order to

verify that similar traffic signatures resulted from similar event

types, we created an application to record network traffic and

a corresponding video recording of Skype calls. We picked

the Skype application due to its popularity and wide user

base as well as its use of the H.264 encoding standard [13].

We note that we do not expect our experiments with the

x264 encoder to be precisely representative of Skype’s H.264

encoder performance, but since they are based on the same

encoding standard the comparison is closer than most other

options. As a commercial application advertising AES 256-bit

encryption, Skype is expected by its users to be a secure and

private means of communication. By testing against the Skype

application, we take advantage of demonstrating the effect of

strong commercial grade encryption on the ability to detect

events through NTA, which we find to be minimal.

Using Skype4Py [14], a python wrapper to Skype’s 3rd

party API, we created event handlers for various activities in

the Skype application including incoming and outgoing call

initiation, call waiting, call ending and other standard Skype

interactions. This application, which we have named Skype

Auto-Answer, executes as a background service and attaches

to a running Skype session which has already been logged

into on the host machine. By detecting the beginning and end

of a new video call, we could use Python to execute external

applications. We used tcpdump to record all network traffic

to a file, and FFmpeg to make a video screen capture of the

Skype window.

With a method available for recording the video and network

traffic, for purposes of comparison between calls, we then

proceeded to make calls from various locations and hardware

equipment to the lab server while executing the Skype Auto-

Answer application. We were able to observe under varying

conditions that the network traffic and corresponding recog-

nizability of events through NTA was affected by camera

type, computer hardware, and network connection bandwidth.

Additionally, we observed that when these factors remained

constant, the traffic measured was consistent between calls.

Figure 6 shows plots for four such calls made from the same

equipment. The calling computer, a Dell Latitude E6530 laptop

with a high definition Logitech c615 external camera, initiated

the call from within our network and the same sequence of

events was recorded four times. The traffic analysis for all four

packet captures are combined in the figure.

The Skype call is connected and we wait approximately



7

25 seconds for the video stream traffic to stabilize. Generally

the stream stabilizes much more quickly than this as seen in

the 1st, 2nd, and 3rd captures, where stable average IAT is

observed after only a few seconds, but may take longer as

in the 4th capture where stable traffic is not observed for 10

seconds. After waiting for the stream to stabilize, we turn off

the video feed in the Skype application for ten seconds then

turn it back on again. Between each action throughout the call,

there is no movement in view of the camera. Next we move

our hand past the camera approximately 12 inches from the

lens, crossing through the field of view in approximately 1

second. After pausing, this action is repeated with the hand

passing only 2-3 inches from the camera. Next the camera is

completely covered to block out all light and remains covered

for several seconds before uncovering. Finally, the lights in

the room are turned off for several seconds and then back on

again.

The annotations in Figure 6 show each event represented

in the network traffic analysis. The eight plots show different

event detection metrics. For all of these captures the sampling

window is 250 ms. This sampling window is chosen based on

the baseline number of packets being received. A window size

that is too large will average too much data together preventing

the detection of small variations such as those seen for the

hand waves. A window size that is too small may not contain

any packets at all. This sampling window allows us to plot

the capture data on a linear time scale. On the left hand side

of Figure 6 from top to bottom, we plot measurements of

network traffic metadata including average inter-arrival time

(IAT) between packets, average packet size (APS), average

bandwidth (ABW), and network packet count (PCNT) for

packets received during the sampling window. After averaging

data in each window the data set is then smoothed across 10

samples. On the right hand side of the figure is the discrete

derivative of the corresponding metric from the left hand side.

These discrete derivative plots are additionally smoothed over

3 samples. The derivative plots are the most useful indicators

for event detection by algorithm since they are a relative

measurement.

Between the four captures we observe that although there

are some changes in the exact manifestation of events in

the NTA, each event is consistently detectable and events

of different types are discernible from each other through

careful observation. When the video is turned off we see the

longest IAT since only audio and control packets are observed,

whereas the camera being covered still causes some video

frames to be transmitted, yielding slightly higher ABW and a

corresponding drop in IAT. Covering the camera versus turning

the lights on and off yields essentially the same signature with

only a variation in the duration of the events. We can see,

however, that as the lights are turned back on the IAT does

not immediately return to the baseline level. This is due to

the fact that the experiment room lighting is fluorescent rather

than incandescent, and the lights turn on in a two stage process

as the bulbs first warm up then reach full brightness. The

hand waves yield the smallest variations and occasionally were

not observable in the network traffic. The discrete derivative

plots demonstrated by these captures become more important

as we attempt to perform event detection with variations in

the video transmission platform. Although baseline values

across these figures are very similar between captures this is

not the case especially for changes in camera resolution and

network bandwidth. The high and low values are indicative of

activity in the video but in a more general sense the change

in measurement compared to the baseline value for a specific

set of hardware is a more reliable indicator.

VII. CONCLUSION AND FUTURE WORK

Our investigation of information leakage in encrypted video

over IP traffic has found that for a variety of codecs and

regardless of encryption for the tested datasets, we are able

to detect events occurring in the field of view of a streaming

video camera through network traffic analysis. This is possible

through analysis of variations in packet sizes and arrival times.

We also measured the time required to encode frames in the

x264 encoder and shown the relationship between variations in

encode time resulting in similar variations in network packet

arrival time. Moreover, investigation of Skype’s H.264 encoder

through packet capture analysis has shown in a laboratory

setting that event detection is repeatable between video calls.

To the best of our knowledge, this is the first work analyzing

encrypted video traffic for information leakage. Our future

work will focus on building a more comprehensive framework

to detect and classify events in encrypted video traffic.

REFERENCES

[1] C. V. Wright, L. Ballard, S. E. Coull, F. Monrose, and G. M. Masson,
“Spot me if you can: Uncovering spoken phrases in encrypted voip
conversations,” in the Proceedings of the IEEE Symposium on Security

and Privacy, 2008.
[2] “Skype,” http://www.skype.com/, Retrieved Dec 2014.
[3] S. A. Baset and H. G. Schulzrinne, “An analysis of the skype peer-

to-peer internet telephony protocol,” in the Proceedings of the IEEE

INFOCOM, 2006.
[4] L. Aimar, “x264,” www.videolan.org/developers/x264.html, Retrieved

Dec 2014.
[5] K. Jack, Video Demystified: A Handbook for the Digital Engineer, 5th

Edition. Burlington, MA: Newness, 2007.
[6] D. Mitrovic, “Video compression,” University of Edinburgh.
[7] W. Van Eck, “Electromagnetic radiation from video display units: an

eavesdropping risk?” Computers & Security, vol. 4, no. 4, pp. 269–286,
1985.

[8] P. Marquardt, A. Verma, H. Carter, and P. Traynor, “(sp)iphone: Decod-
ing vibrations from nearby keyboards using mobile phone accelerome-
ters,” in the Proceedings of the ACM CCS, 2011.

[9] D. Brumley and D. Boneh, “Remote timing attacks are practical,”
Computer Networks, vol. 48, no. 5, pp. 701–716, 2005.

[10] P. Kocher, “Timing attacks on implementations of diffie-hellman, rsa,
dss, and other systems,” in the Proceedings of the International Cryp-

tology Conference on Advances in Cryptology, 1996.
[11] K. Dyer, S. Coull, T. Ristenpart, and T. Shrimpton, “Peek-a-boo, i still

see you: Why efficient traffic analysis countermeasures fail,” in the

Proceedings of the IEEE Sypmposium on Security and Privacy, 2012.
[12] A. Babikyan, “Sharktools,” https://github.com/armenb/sharktools/, Re-

trieved Dec 2014.
[13] D. Bonfiglio, M. Mellia, M. Meo, N. Ritacca, and D. Rossi, “Tracking

down skype traffic,” in the Proceedings of the IEEE INFOCOM, 2008.
[14] “Skype4py 1.0.35,” https://pypi.python.org/pypi/Skype4Py/, Retrieved

Dec 2014.


