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Abstract
Additive Manufacturing is an increasingly integral part
of industrial manufacturing. Safety-critical products,
such as medical prostheses and parts for aerospace and
automotive industries are being printed by additive man-
ufacturing methods with no standard means of verifica-
tion. In this paper, we develop a scheme of verifica-
tion and intrusion detection that is independent of the
printer firmware and controller PC. The scheme incorpo-
rates analyses of the acoustic signature of a manufactur-
ing process, real-time tracking of machine components,
and post production materials analysis. Not only will
these methods allow the end user to verify the accuracy
of printed models, but they will also save material costs
by verifying the prints in real time and stopping the pro-
cess in the event of a discrepancy. We evaluate our meth-
ods using three different types of 3D printers and one
CNC machine and find them to be 100% accurate when
detecting erroneous prints in real time. We also present
a use case in which an erroneous print of a tibial knee
prosthesis is identified.

1 Introduction

Additive Manufacturing (AM), also known as 3D print-
ing, is an emerging field that shows promise in reducing
waste, time, and infrastructure needed in a manufactur-
ing process. Many major companies including Ford, GE,
Airbus, SpaceX, Koenigsegg, and NASA are currently
utilizing AM for both prototyping and production-quality
manufacturing [43, 2, 1, 25, 15, 24]. Additionally, AM
has been employed as a useful tool for printing medi-
cal implants [9], and cutting edge research is underway
on producing food, drugs, and living tissue using AM
techniques [4, 21]. Across industries, AM is expected to
reach a market potential of 50% by 2038 [53].

Because of this potential for wide-spread use of AM
in the coming decades, work has begun on understanding

the security challenges that are unique compared to tradi-
tional manufacturing and cyber-physical security. Mark
Yampolskiy, et al. [55] outlined a taxonomy for the po-
tential of the misuse of a 3D printer as a weapon (3D-
PaaW). In their paper, they identify the elements which
may compromise or manipulate an AM environment, the
targets of attack (printed object, printers, or environ-
ment), and the parameters for understanding the potential
effectiveness of a given attack.

In this paper, we focus on the use of a 3D-PaaW to
manipulate the physical properties of a printed object
through manipulation of the object specifications, manu-
facturing parameters, and/or source material. According
to the taxonomy described by Yampolskiy, et al. each
of these are classified as attacks which would be achiev-
able by an adversary through the manipulation of printer
firmware or the controller PC. It has been shown that
structural integrity can easily be compromised by intro-
ducing slight modifications in the model, e.g., a minus-
cule void injected into a manufactured dog bone can re-
duce the yield load by 14 percent [48].

In order to combat these forms of attack, we propose
three methods of verification of design parameters that
utilize analysis of the acoustic signal, embedded materi-
als, and spatial position of machine components. These
are chosen because they provide information about the
manufactured design without access to the STL file or the
G-code instructions1 read by the printer. We do not con-
sider our techniques to be a panacea for all verification
needs. They are meant to be complementary to domain-
specific verification methods. In some cases, this may be
means of saving costs, e.g., by detecting malicious prints
in real-time and ending them at the onset of a detection.
In other cases, this may be a means of ensuring safety,
e.g., by detecting malicious materials or designs before

1An STL file is a STereoLithography file for CAD software used
in 3D printing. G-code is the set of actual instructions for 3D printers
that are generated for particular models given an STL file and the print
configuration, e.g., print speed and infill density.
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the print is used. Throughout the course of this paper, we
will consider the use case of printing the tibial portion of
a knee prosthesis.

Our contributions are as follows:

• A multi-layered approach to the verification of de-
sign specifications, manufacturing parameters, and
materials used in an AM.

• Proposed implementations of aforementioned ap-
proach for in-house and third-party AM producers.

• A case study of a scenario in which a malicious print
of a medical prosthetic is identified.

The paper is organized as follows. We first provide
a background in AM verification along with a system
overview and threat model in section 2. We then provide
details for the different types of verification methods that
we proposed in section 3. In section 4, we evaluate the
effectiveness of the combined verification scheme on a
malicious print of a tibial knee implant. In section 5 we
discuss the implementation and limitations of the veri-
fication scheme. We conclude in section 6 and discuss
future work.

2 Background and System Model

In this section we discuss the previous efforts related to
side-channel analysis of AM and verification of the phys-
ical models. We then provide a system overview of our
approach as well as the threat model that will be used for
the rest of the paper.

2.1 Side-Channel Analysis
In this paper we provide a means of verification by utiliz-
ing the various side-channels of the printing process. We
also use materials science based verification to verify that
the intended physical model is printed. As such, we first
review previous efforts that have been made for the anal-
ysis of the side-channels involved in the AM process. We
then provide a brief review on materials-based verifica-
tion techniques like Raman spectroscopy and computed
tomography (CT).
Acoustic, Magnetic, and Motion Sensing. KCAD [11]
provided the first method of using the analog emissions
of AM processes for the purpose of detecting so-called
zero-day kinetic cyber-attacks. However, the work uti-
lizes only one 3D printer and only investigates attacks
in which simple variations in the exterior design. The
paper also lacks any means of verifying the printed ma-
terials post-manufacturing. The focus of the majority of
previous work on the analysis of side-channels from 3D
printers used in AM has been its usefulness in obtaining

intellectual property. Chen Song, et al. [44] and Avesta
Hojjati, et al. [22] each showed that the array of sen-
sors available on a modern smart phone can be leveraged
to re-create designs produced from 3D printers or CNC
machines. The sensors used in each study to collect side-
channel data included the microphone, magnetometer,
and accelerometer. Each group was able to reconstruct
simple printed designs using supervised machine learn-
ing and manual analysis of sensor signals respectively.
However, each group was only able to reconstruct very
simple shapes such as two-dimensional outlines of air-
planes or keys with no fill structure.

Beyond 3D printing and manufacturing, acoustic sig-
nals have also been shown to be useful in a growing
number of security applications. As an example, Guri
Mordechai, et al. [19] showed that information can be
transmitted from a speakerless PC using information em-
bedded in the sound of a cooling fan. Likewise, ac-
celerometers have been used across industries as quality
control sensors in CNC machines [31].

2.2 Physical Model Verification

The physical model that is printed from the AM ma-
chines are typically verified in a manner specific to the
domain, such as mechanical strength testing [48]. Chien,
et al. [12] use several techniques such as surface mor-
phology characterization to verify 3D-printed tissue scaf-
folds. Furthermore, several solutions have been pre-
sented as preventative measures to future physical fail-
ures, such as the solution presented by Stava, et al.
[45] for detecting and correcting models prior to being
printed. However, these only correct the models that are
being sent to the printer and do not verify the actual phys-
ical model in the event that the printer itself is compro-
mised.
Imaging Analysis. We will now discuss the background
for two modalities used for observing the composition of
materials that will be explored in this paper for the veri-
fication of 3D printed models. It is important to note that
we do not consider these modalities to be the most effec-
tive imaging techniques nor the most cost-effective solu-
tions. As we will discuss in section 4, we chose these two
modalities as they were readily available and are general-
izable. Both solutions will act as a template for imaging
techniques that are used to identify embedded materials.
The choices for both the imaging technique and the asso-
ciated embedded materials will be specific to the context
in which they are applied.
Raman Spectroscopy. Surface-enhanced Raman spec-
troscopy (SERS) has been shown to be sensitive to
single-molecule detection [35, 28, 34, 30]. Nie, et al.
[35] have shown that silver colloidal nanoparticles can
be used to amplify the spectroscopic signature of ad-
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Figure 1: System Model.

sorbed Rhodamine 6G (R6G) and enable the single R6G
molecule detection at room temperature. Furthermore,
the sizes and shapes of the colloids enhance the spectral
responses at different plasmon bands [36, 37]. We find
that this technique can be utilized for post-production
verification of 3D printed objects. By embedding a se-
ries of detectable markers of contrast agents in SERS at
specific location within the 3D printed object, the SERS
process would be able to reconstruct the model and ver-
ify the integrity of the internal structure of an object.
Computed Tomography. CT is typically used in medi-
cal applications to enable doctors to view precise images
of their patients’ internal organs [26]. Additionally, CT
scanning also has been used in a wide variety of appli-
cations for verifying structural integrity. Cnudde, et al.
[13] discuss the application of CT scanning in the con-
text of geomaterials. Akin, et al. [5] also discuss the
use of CT as a non-destructive method for imaging mul-
tiphase flow in porous media in the context of petroleum
engineering research. Similarly, Alymore [7] discusses
how CT scanning was used as a non-destructive method
for studying soil behavior and soil/plant/water relations
in space and time. In this study, we utilize CT in a simi-
lar fashion to construct models and verify the integrity of
completed objects.

2.3 System Model
Figure 1 provides an overview of the system model that
includes all verification techniques presented in this pa-
per. Our system assumes that there is an end user with
a 3D model design. The design will be printed on a
3D printer that is controlled by a controller PC. The 3D
printer may or may not be controlled by a third party
entity. The end user will send her design to be printed.
Throughout the printing process, the object will be ver-

ified using three verification layers. The first two lay-
ers are achieved through acoustic side-channel analysis
and spatial sensing which analyze the sound and physical
position of printing components respectively. The third
layer is that of materials verification in which imaging
techniques are used to verify that the print is made from
the proper material and printed correctly.

The end user may supply her own modified set of ma-
terials to the printer so that physical model verification
may be performed upon completion. The goal is to em-
bed special materials into the filament that is used in 3D
printing. The modified filament can be used for materials
verification purposes.

For the remainder of the paper, acoustic side-channel
verification, spatial side-channel verification and materi-
als verification are referred to as the acoustic layer, spa-
tial layer, and material layer respectively.

2.4 Threat Model
The threat model assumes that the attacker has full
knowledge of both the printer and its control software.
If a third party manufacturer or affiliate of the user is in-
volved, they are trusted as an organization. Therefore,
they are willing to provide information about the print
for verification. However, malicious entities may in-
clude network intruders, disgruntled employees, or other
insider threats. The attack is carried out such that the
printer behaves maliciously despite being sent G-code 2

for a non-malicious print. Meanwhile, the controller PC
indicates that the print is being carried out correctly. This
attack is feasable using a a cyber-physical rootkit such as
Harvey described by Garcia, et al. [18].

2G-code is the set of instructions interpreted by a 3D-Printer, CNC,
or other machine that includes information about motion direction,
speed, and other operations.
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It is also assumed that training prints may be per-
formed under supervised circumstances in which it may
be reasonably assumed that no attack is taking place.
This may be achieved by a direct connection between
the controlling machine and the printer via USB. The
materials supplier shown in Figure 1 is assumed to be
trusted. Untrusted materials suppliers are beyond the
scope of this paper. For the materials-based verification,
the modified filaments with the embedded materials are
to be supplied directly by the end user. Furthermore, all
communication channels among trusted entities are as-
sumed to be secure.

2.5 Use Case: Prosthetic Tibial Implant
For a specific use case example, the tibial implant por-
tion of a prosthetic knee was chosen. Unlike the titanium
alloy component of the prosthetic knee that attaches to
the femur, the tibial portion of the implant is made from
polyethylene and has been identified as a component that
could easily be manufactured through AM [9, 3]. Fur-
thermore, the knee undergoes more mechanical stress
than any joint [42]. Thus much research has been con-
ducted which describes the medical implications of its
wear and tear [50, 27]. Therefore, an attack is considered
in which alterations are made to the internal structure of
tibial knee implant that would dramatically increase the
rate of wear.

3 Verification Layers and Implementation

The main focus of this paper is to verify the unseen inter-
nal fill structure present in all 3D printed objects. When a
print is converted from a design on a computer to G-code
instructions for a 3D printer or CNC, an internal struc-
ture for the physical product must be generated. These
can range from low density for prototyping or non-load
bearing prints to high density for load bearing or indus-
trial use. The fill itself may take on a honeycomb pattern,
rectilinear pattern, or other various patterns as specified
by the user. Failure to produce the proper internal fill will
render a final product that may externally look like the
design intends, but fails to provide other required physi-
cal characteristics.

In order to develop a robust verification scheme, meth-
ods were needed that would allow for real-time identifi-
cation and visualization of potentially malicious prints
as well as visualization of a completed print to ensure
its usability. Analysis of the acoustic side-channel was
chosen as a non-intrusive method of identification. In-
stead of using traditional machine learning methods as
have been used before, we use an audio classification
scheme similar to popular apps used for identifying mu-
sic. For real-time visualization, a method of tracking the

moving components of a printer or CNC machine was
determined to be a useful way of understanding the pro-
cess without relying on control software. Finally, meth-
ods were borrowed from materials science by which the
internal structure of an already completed print may be
observed in a non-destructive way.

3.1 Side-Channel Verification

The side-channel analysis verification layers provide a
means of verifying printed models in real-time. The goal
is to infer as much information as possible from the given
side-channels, but we do not expect each modality to be
able to verify the entire print in itself. We will first dis-
cuss the experimental setup for each side-channel modal-
ity.
Acoustic Layer. As a physical byproduct of nearly any
mechanical process, acoustic signals have been explored
as a method of understanding information being pro-
cessed by both traditional printers [8] and 3D Printers
used in AM [44, 22, 11]. Because traditional printing
methods now rely on lasers or ink jets, the information
obtained from these is minimal. However, 3D printers
will continue to rely on various actuators and fans for the
foreseeable future which produce useful acoustic data.
This is especially true for large-scale implementations of
the technology.

In this verification layer, we assume that a particular
design with a given infill structure will be printed multi-
ple times. We use an open source audio classifier similar
to the Shazaam [6] or SoundHound Applications. Using
a training audio file, it locates noise-resistant peak fre-
quencies and their temporal location within the file. It
then locates frequency peaks in the test data that match
the location, frequency, and spacing from other peaks.
When a test file is identified, it is accompanied by a con-
fidence score among other information. The confidence
score indicates the number of peaks that the test has in
common with the training data.

For AM verification, we use a single print as a train-
ing set by recording it with a microphone to obtain an
audio file. Because even a simple print can take many
minutes, the resulting file is separated into a number of
segments of a given length (some number of seconds)
and indexed in ascending order. Each indexed segment
of the print is then trained as a different “song” and stored
in a database. In many machine learning schema, com-
mon practice is to train multiple sets of data. However,
because acoustic classification involves one-to-one com-
parison of audio files, a single-file training set is appro-
priate.

Test data is collected using the same method as train-
ing data and split into segments of the same length. Each
indexed segment is then classified independently and a
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confidence score is returned. The confidence score rep-
resents the number of frequency peaks that a given file
has in common with the training file. Verification that a
repeated print is unaltered from the training set is deter-
mined in two ways:

1. The classification results are such that the index val-
ues appear in ascending order. If they are out of
order, it is likely that a change has been made.

2. The confidence score of one or more indexed classi-
fication results falls below a given threshold value.
The threshold value is referred to as the confidence
threshold (CTh) for the remainder of the paper. Its
value is optimized manually for each printer to max-
imize the true positive rate and minimize the false
positive rate.

With this, a print will be considered verified if each in-
dexed audio file is classified correctly, in the correct or-
der, and with confidence values greater than the CTh. A
non-verified print conversely will be classified but out of
order or with one or more confidence values less than
CTh.

To test this method, two designs, shown in Figure 2
are used throughout this paper. They are described as
a Rectangular Prism (right) and a Top Hat (left). Each
was printed several times with “Honeycomb” and “Rec-
tilinear” fill patterns of 20%, 40%, and 60% density. For
each print style, a single set of audio data was split and
stored in a unique database as described above.

In order to derive quantitative results to the test clas-
sifications, we assign a “score” to each segment of the
audio data which are defined as follows:

• If a segment is in proper sequence and the confi-
dence value is greater than CTh, its score is equal to
that of the confidence value.

• If a segment is out of sequence, its score is equal to
−1∗ confidence value.

• If a segment is in sequence, but the confidence
value is less than CTh, its score is set equal to
−1∗ confidence value.

Figure 2: 3D Printed models described as (left) Top Hat
and (right) Rectangular Prism.

If a negative score is calculated for any segment of the
sliced audio file, a positive error classification may be
determined. If no negative values are calculated, a nega-
tive error classification is determined.

Sample results are shown in Figure 3. The print is
a Rectangular Prism with a 20% density Honeycomb
fill pattern. The top chart shows the averaged results
of three known negative error classifications (true nega-
tives). Each bar represents a 90 second slice of the print-
ing data, and CTh is set to 35. Likewise, the bottom chart
represents various positive error classifications (true pos-
itives) caused by incorrect fill densities or patterns. Each
type of error is printed four times and the results are av-
eraged. For errors involving the Honeycomb fill pattern
with erroneous densities, a positive error classification is
achieved within 270s or the first 60% of the print. For
the erroneous Rectilinear fill pattern, positive error clas-
sification is achieved within 180s or 40% of the print.
In each case, the first 90s slice is always receives high
scores due to the fact that the design always starts with a
100% density fill of the first three layers. This is standard
in 3D printing to ensure that the exterior is solid.

Figure 3: Classification example.

Spatial Sensing Layer. When performing 3D prints,
it was found that the software used to monitor print
progress simply displayed the progress of the G-code in-
structions being sent to the printer. This is regardless of
the actual actions of the printer. The goal in setting up
a spatial sensing verification scheme was to physically
monitor the position of the printing nozzle with respect
to the printing base, in order to observe their actual posi-
tions throughout the printing process.

The first consideration was to use a ride-along ac-
celerometer such as those described in section 2. How-
ever, due to the double integration from acceleration to
position and the noisiness of the accelerometer data, vi-
sual representations of the printer’s path became pro-
hibitively difficult to obtain.

With this in mind, a scheme was developed in which
the a gyroscopic sensor was paired with a linear poten-
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Figure 4: Spatial sensing setup with Unimeasure lin-
ear potentiometer model number LA-PA-10-N1N-NPC,
SparkFun Triple Axis Accelerometer and Gyro Break-
out, and Teensy 3.2 board.

tiometer in order to construct a set of spherical coordi-
nates to describe the printer’s motion. This proved more
effective because no integration was needed for the data,
and only simple moving average filtering was necessary
to reduce noise.

To obtain these measurements, the following devices
were used: a Unimeasure linear potentiometer model
number LA-PA-10-N1N-NPC, a SparkFun Triple Axis
Accelerometer and Gyro Breakout MPU-6050, and a
Teensy 3.2 board. The experiments were conducted in a
setup as shown in Figure 4 with a Dobot Magician desk-
top CNC and 3D Printer. For experimental purposes, the
actual 3D printing extruder was removed and “dummy”
prints were performed. The test prints were a single layer
of a circular disk printed with Honeycomb and Rectan-
gular fills each with a 20% and 40% density. Data is
collected at a rate of 100Hz. In Figure 5, each print is
shown as the G-code representation next to the recon-
structed path of the printer. The data shown is smoothed
using a moving average filter with a window of five.

3.2 Materials Verification

The objective of our materials-based verification is to
embed contrast agents that will act as signature mark-
ers for particular prints without compromising the struc-
tural integrity of the original model. The contrast agents
are chosen based on the materials as well as the scan-
ning modalities. This approach is similar to the approach
presented by Le, et al. [29] for privacy-preserving tech-
niques for secure point-of-care medical diagnostics in
which they used synthetic beads with different dielectric
properties for user identification. In our case, we em-
bed a single type of nanoparticle at different points in the
printed model to generate a pattern specific to the model.
This will allow us to ensure that the model was not modi-

Figure 5: Comparison of G-code reconstruction to gyro-
scopic sensing reconstruction of single layers of various
fill types and densities.

fied by either an attacker who compromised the firmware
and is duping the manufacturer, or a malicious insider
who has physical access to the printing process. While
it is arguable that embedded markers would change the
integrity of the material itself, numerous studies have
shown that the use of nanoparticles actually improves the
materials’ mechanical strength [54, 14, 17, 33].

Here, we explore two types of scanning modali-
ties: Raman spectroscopy and computed tomography
(CT). Although both modalities are not necessarily cost-
effective, our goal is to explore their effectiveness in our
verification techniques. In both cases, we assume that the
end user will provide the necessary materials to the man-
ufacturer, who will be responsible for printing the model.
The design sent to the manufacturer will not include any
information about the embedded materials. We will now
briefly discuss the different scanning modalities in detail.
Raman Spectroscopy. The first of the aforemen-
tioned modalities is Raman spectroscopy, which has been
shown to be applicable for specific target identification
and quantification [35, 28, 34, 30, 39, 47, 56]. The target
sample is irradiated with a monochromatic light source
such as laser. The majority of the scattering light has the
same frequency of the incident light. This elastic scat-
tering is called Rayleigh scattering. A small fraction of
the scattering is inelastic. It has a small shift in pho-
ton frequency due to the energy transfer with the target
molecules. When excited at a specific frequency, the tar-
get molecules can either increase or decrease in vibra-
tional energy. Thus, the small fraction of the scattering
light reduces (Stokes shift) or gains (anti-Stokes shift)
equally the energy of the molecule vibration.
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Due to to the unique covalent bonds and atomic mass
of the each molecule, different molecules require specific
excitation energy to change the molecule vibration [32].
The combination of multiple energy shifts creates the
unique spectrum for each target molecule. The distinct
spectra can be use to identify the target molecule in Ra-
man spectroscopy.
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Figure 6: Raman scattering measurement of Sil-
icon wafer with gold nanorods (GNRs) and 3,3’-
Diethylthiatricarbocyanine iodide (DTTCI). The Raman
spectrum of Si is amplified when using the enhancers.

Contrast agents in Surface enhanced Raman spec-
troscopy (SERS) can be used to amplify the Raman spec-
tra of the target samples. As the electromagnetic wave
(laser) irradiates the contrast agent molecules, it excites
the localized surface plasmons on the rough surface. This
results in the enhancement of electromagnetic fields near
the surface [16, 10, 46]. The increase in intensity of the
electromagnetic fields would also increase the intensity
of Raman scattering. Thus, the Raman spectra is ampli-
fied. As a result, by coupling the contrast agents with
the target molecules, SERS technique can be applied for
identification of target molecules. Furthermore, SERS is
also shown to be applicable for in vivo studying [40, 23].
Qian, et al. has shown that pegylated gold nanoparticles
can be used to target tumor cells in live animals in an in
vivo study.

In this study, we utilize gold nanorods (GNRs -
Sigma Aldrich) and 3,3’-Diethylthiatricarbocyanine io-
dide (DTTCI - Sigma Aldrich) as the two different con-
trast agents in SERS detections to verify the material of
the 3D printed object. The contrast agent can be embed-
ded in the filament at specific locations for material iden-
tification. The internal structure of the 3D printed object
can be verified using the embedded materials. Figure 6
shows the result of the standard Raman scattering mea-

surement of the Silicon (Si) wafer and the Raman scatter-
ing of GNRs and DTTCI drop coat on top of the wafer.
The Si wafer is used to calibrate the Raman instrument
prior to the experiments. The Si Raman spectra has been
studied thoroughly [38, 49, 41]. In Figure 6, the GNRs
and the DTTCI amplified the signal response of the Si
Raman scattering intensity.
Computed Tomography. The second scanning modal-
ity is a computed tomography (CT) scan. Just as in the
SERS experiment, we needed to find an effective contrast
agent that would allow us to view the embedded materi-
als within the 3D printed model. Because it has been
shown that gold works as an excellent contrast agent due
to its X-ray density [20] and because we already had the
materials at our disposal, we decided to reuse the GNRs
as our contrast agent. Furthermore, the GNRs’ biocom-
patability will allow us to apply our verification proce-
dures to the tibial prosthesis.

(a) Skyscan 1172 MicroCT scanner.

(b) ABS control print. (c) GNR layer print.

Figure 7: CT scan of ABS cylindrical tube with embed-
ded GNRs.

We initially experimented with the use of GNRs as a
contrast agent for CT scanning by embedding them in a
simple 3D printed model. We developed and printed a
cylindrical 3D model using a standard acrylonitrile buta-
diene styrene (ABS) filament as the control material of
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the model. Multiple layers of ABS filament with embed-
ded GNRs were deposited in between the bulk material.

Figure 7 shows the initial results of the 3D printed
model with a layer of injected GNR filament. We per-
formed a CT scan using a Skyscan 1172 MicroCT scan-
ner. As the figure shows, the GNRs did indeed contrast
with the ABS filament. This was sufficient to prove that
GNRs could be used as a contrast agent for our printing
use case. However, we will discuss in subsection 4.2 the
limitations of the custom filament and as well as why we
did not use the GNRs in our final evaluation.

4 Evaluation

In this section we evaluate the three-layered verification
method. We describe the identification of a malicious
print, the observation of the detected error, and the post-
production materials verification. Then, we evaluate the
effectiveness of the acoustic and spatial verification on
the use case of a 3D printed tibial knee implant.

To quantify the accuracy of the results of the vari-
ous tests, the data is fit into a logistic regression model
with the binary dependent variable of “malicious print
detected” or “no malicious print detected”. From the
model, we extract the probabilistic classification out-
comes and create a receiver operating characteristic
(ROC) curve. The area under the ROC curve (AUROC)
is the metric used to predict classification accuracy.

Also, it is important to note that due to the fact that
these machines are used to produce real 3D prints, large
amounts of data were not practical to obtain. Further-
more, the imaging analysis techniques used for the mate-
rials verification were also time-consuming with limited
availability. Therefore, sample sizes in this section will
be significantly smaller than papers dealing with com-
puter simulations.

4.1 Identification of Malicious Prints

In this section, we evaluate the usefulness of the pro-
posed verification method in simply identifying an error
in a potentially malicious print. This initial identification
will be carried out primarily by the acoustic layer with
redundancy in the spatial layer to reduce false classifica-
tions.
Classification Accuracy. In order to gain initial un-
derstanding of the parameters that affect the accuracy
of the acoustic layer, several experiments were carried
out with a small number of trials. The printers used in
the tests were a Lulzbot Taz6, Lulzbot TazMini, and an
Orion Delta. The AKG P170 condenser microphone was
placed on a stand as close to the moving extruder head
without being knocked over by the moving components

of the printer. The audio classifier is called dejavu [52]
and is an open-source project written in python.

In order to generate data useful for logistic regression,
a vector of scores, S, is generated using the exact method
as is described in subsection 3.1. For example, the com-
ponents of S are what are shown in Figure 3. The vector
S is of length n where n = b audio length

audio slice lengthc. We then cal-
culate a print score, p, where

p = ∑
n

Sn . (1)

The value p associated with a given print now determines
how likely the print is to be the same as the training print
with higher values meaning more likely and lower values
meaning less likely.

In Figure 8, the ROC curves are shown for the classifi-
cation results of the Rectangular Prism design with Hon-
eycomb and Rectilinear fills. The audio is segmented
to 90 second and 120 second segments, each CTh = 35.
The same original audio files are used whether the audio
files are segmented to 90 seconds or 120 seconds. The
Honeycomb and Rectilinear tests each consist of nine tar-
get prints and sixty malicious prints. The reason for the
large number of known positive error classifications was
that each print is considered an erroneous version of each
other print.

Figure 8: ROC Curve for Rectangular Prism, CTh = 35.

The poorest performance was an AUROC of 0.7815 for
the rectilinear fill with the audio segmented at 90 sec-
onds. That was determined to be unacceptable especially
considering the high likelihood of false positives. To find
an explanation for the poor classification, the G-code was
inspected. Upon investigation of the G-code which was
generated by Slic3r, it was found 9 lines which specified
x and y coordinates along with the extrusion rate were
repeated 12 times each out of 15 layers needed to com-
plete the print in both the Rectilinear and Honeycomb fill
patterns. Also, upon investigating sequentially repeated
blocks of code, it was found that blocks of G-code de-
scribing three entire layers were repeated twice during
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the course of the print. This symmetry was hypothesized
to be the cause of the classification confusion.

To test this hypothesis, a second set of tests were con-
ducted with the Top Hat design, which is asymmetrical
along the z axis. The same number of prints was per-
formed with Honeycomb and Rectilinear fill being sliced
to 90s and 120s each and CTh set to 35. The ROC curve
of these experiments are shown in Figure 9. Each sample
consists of nine target prints and sixty malicious prints,
and the same data is used for the 90 second audio slice
length as the 120 second slice.

Upon investigation of the G-code, the only repeated
lines were those that define the nozzle speed at the be-
ginning and do not include extrusion. Furthermore, there
are no blocks of G-code or layers that are entirely re-
peated verbatim. This is suspected to contribute greatly
to the increased performance seen in Figure 9. Here,
least AUROC is 0.9852 which is suitable for verification
purposes. Between the 120 second and 90 second slice
lengths, we see little change in performance. Although

Figure 9: ROC Curves for Top Hat.

audio classification is shown here to be effective in iden-
tifying malicious prints, it is still susceptible to both false
positives. By introducing data from the spatial layer,
these may be reduced. For instance, Figure 10 compares
the data from the x, y, and z axes of the 40% Honeycomb
and 40% Rectilinear fills from Figure 5. Here, we see a
significant difference between the two prints. Each fre-
quency response has a similar shape, but the major fea-
tures of the 40% Rectilinear fill are shifted to the right
because the back-and-forth motion is not impeded by the
creation of small Honeycomb structures.

For classification, the four most prominent peaks are
used as features along with their locations. We conducted
a test in which the target print was chosen to be the disk
with 20% density Rectilinear fill shown above. All other
prints were considered malicious. With this, we had 10
target prints and 12 malicious prints. Training using the
linear regression model, an AUROC of 1.0 was achieved
in differentiating between malicious and target prints.

Figure 10: Comparison of the frequency response be-
tween a single layer of Honeycomb 40% fill and Recti-
linear 40% fill. Four samples of each fill are compared.

While the spatial sensing layer is primarily for the pur-
pose of print visualization, its role in conjunction with
the acoustic layer allows for 100% accuracy in detecting
malicious prints.

Varied Printer Models. In order to understand the effec-
tiveness of audio classification for print verification on
different printer models, several prints were performed
on a Lulzbot TazMini and Orion Delta. Acoustic data
recordings are obtained using the same microphone. In
each print, a Top Hat design identical to the one de-
scribed above was printed and the audio was sliced to
120s. The optimized CTh for the TazMini, Orion Delta,
and Taz6 are 150, 20, and 35 respectively. The ROC
curve results are shown in Figure 11. Because the Hon-
eycomb and Rectilinear fill patterns are considered to-
gether, each data set consists of 18 target prints and 120
malicious prints. Consequently, the acoustic verification
method is generalizable to printers of different sizes and
configurations. The AUROC does not fall below 0.9542
in these tests.

Figure 11: ROC curves for top hat design printed using
a TazMini, Orion Delta, and Taz6 perint. Prints audio
was sliced to 120 seconds and the confidence threshold
is 150, 20, and 35 respectively.
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Classification in Noisy Environments. Other experi-
ments were conducted using an Afina H40 3D Printer
with an eBoTrade Digital Voice Recorder wide-range mi-
crophone. This setup was in a noisy university mak-
erspace with people talking near the printer. In this
experiment, the classification accuracy suffered greatly
(AUROC ≈ 0.5). Because it is shown that acoustic veri-
fication is useful on different types of printers above, we
assume that the loss of classification accuracy is due to
the noise in the environment. Also, because the micro-
phone was wide range and not directional, the talking
near the printer can be clearly heard. Therefore, in the
implementation of this verification scheme it is impor-
tant to use a directional microphone and noise isolation
as much as possible.

4.2 Visualization of Malicious Prints

When a potentially malicious print is identified as de-
scribed above, it is important to have the capability to
visualize the potential threat. This visualization must
be independent of the intended G-code which may be
interpreted differently by malicious firmware. This is
achieved in real time through use of the spatial sensing
layer and in post-production by the materials inspection
layer.
Real-Time Visualization. In the event that a potential
malicious print is identified, a user has the capability of
viewing the real-time print in progress through the spa-
tial sensing as seen in Figure 5. By viewing the layer
in progress, significant fill pattern changes such as those
between the 20% Honeycomb and 20% Rectilinear fill
are obvious. However, less obvious changes made to
the print such as those between the 40% Honeycomb and
Rectilinear fills are identifiable through FFT Analysis as
in Figure 10. This is particularly true, as will be shown
in subsection 4.3, if the user has access to the frequency
response of a reference print.

While the spatial sensing layer is useful for identify-
ing the type of fill pattern that is being maliciously gen-
erated, it is less useful for identifying if the design itself
has been altered due to the warping that occurs in the
data. This, however, is an easy issue to solve through the
use of a webcam which can easily identify the shape of
the design. In this sense, it may seem that spatial sensing
may be replaced altogether by a webcam, but it is impor-
tant that the latter uses far more data and does not readily
provide information about the frequency response.
Post Production Visualization. The aforementioned
materials-based verification methods are meant to be
generalized for any scanning method that can detect the
embedded contrast material within a 3D model. In our
case, we chose Raman spectroscopy and computed to-
mography because those modalities were readily avail-

able to us at the time of evaluation.
Given the results shown in Figure 6, we concluded that

the GNRs and DTTCI can be combined for use as a con-
trast agent in Raman spectroscopy. The contrast agents
amplify the photon count across the Silicon spectrum in
Raman spectroscopy. To echo the results shown in Fig-
ure 6 for the 3D printed disk, we use 10 nm diameter
GNRs 780 nm absorption, and DTTCI 765 nm absorp-
tion (Sigma Aldrich) diluted in ethanol as the two distinct
contrast agents. Each contrast agent is drop coated on the
surface of the 3D printed disk. The Raman spectra of the
blank 3D printed disk is also taken as the control data.

To emulate the filament with the embedded contrast
agent, we produced the filament from ABS pellets us-
ing the filament maker (Filabot). For the GNRs embed-
ded filament, the ABS pellets are submerged in a GNR
solution and left to dry. In this test, a 4 mL GNR solu-
tion was mixed with 12 g of pellets. Based on the infor-
mation from the manufacturer, we naively calculated the
number of GNRs per mL of solution to be approximately
7.284e11. Per 12 g of pellets, we can produce approxi-
mately 2 m of filament with a 2.5 mm diameter. The 3D
printed disk has 50 µm in layer thickness. Therefore, for
the area of 1 µm2 on each layer of the 3D printed disk,
there are approximately 4 GNRs particles. This approxi-
mation only serves as the estimation of the GNRs within
the measurement area. Due to the non-uniform mixing
of the the GNRs in the pellets, the distribution of GNRs
within the 3D printed disk varies considerably. For the
DTTCI embedded filament, while the quantity of DTTCI
in the filament is not estimated, larger quantities of the
DTTCI enhancer were available to produce the modified
filament. The blank ABS filament is extruded using only
ABS pellets.
Precise Embedding of Contrast Agents. In an ideal
case, we would have the ability to embed the contrast
agents or markers at precise Cartesian coordinates within
the 3D printed models. However, for our proof of con-
cept, we chose to simply create an ABS filament that was
saturated in the GNRs or DTTCI throughout the entire
spool of filament. The precise embedding of markers lo-
cation is beyond the scope of current work. It can be
explored in the near future. We then used a Lulzbot Taz
dual extruder tool head to provide the capability of local-
ize the embedded filament at precise locations.

In the following subsection, we evaluate the Raman
spectra of the blank 3D printed disk, the 3D disk with
GNRs or DTTCI drop coat on the surface, and the 3D
printed disk with GNRs or DTTCI embedded filament.
We wrote a simple C++ program that allowed the user
to embed filament at desired locations by modifying the
G-code where necessary, i.e., switching between the ex-
truder nozzle containing the normal filament and the noz-
zle containing the GNR filament. The user can spec-
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ify the beginning and end points of embedded material
within the normal print path. This method was used for
both the initial CT scan results as well as the final evalu-
ation.

Imaging Analysis. In the evaluation using Raman
spectroscopy, the 3D printed disk is excited with with
785 nm infrared light for 20 s per accumulation of data
at 100 % power setting in Renishaw InVia micro-Raman
system. Figure 12 shows the mean measurement results
all data spectra of the 3D printed disks. Similar to the re-
sults from Figure 6, the spectrum of the 3D printed disk
with DTTCI coated surface has significant improvement
of photons counts across the spectrum comparing to the
control data of the blank 3D printed disk. The spectra of
the 3D printed disk from DTTCI embedded filament also
shows the elevation of photons counts comparing to the
control data. These spectra fall in between the spectra of
the control data and the surface coated 3D printed disk.
This conforms with the fact that the surface coated would
accumulate more contrast agent at the measurement site
comparing to the embedded filament. While the Raman
spectroscopy can be used to quantify the concentration
of the target particles, the elevation of the photons count
in Figure 12 does not reflect the approximate distribution
of contrast agent embedded in the filament. The mea-
surement site in Raman spectroscopy might be a clus-
ter or spare of contrast agent or markers. As mentioned
above, the markers might not be uniformly distributed in
the filament. This is confirmed in Figure 7c as a result
of the MicroCT scanner. The high reflection in the CT
scan shows the large cluster of the GNRs in the embed-
ded filament. Due to the low resolution of the MicroCT
scanner, the scan would not highlight the areas where the
GNRs are sparsely distributed. While the Raman spec-
troscopy results of the GNRs embedded filament are not
shown, the similar response can be discerned.

In classification of 3D printed blank ABS, GNRs em-
bedded, and DTTCI embedded disk, mean and standard
deviation of the spectra are used to distinguish the clus-
ter of data set. Figure 12 shows the mean of the typi-
cal response of Raman spectra of 3D printed disk with
blank ABS, DTTCI coated disk, and DTTCI embedded
ABS filament. By observation, the greatest change of
Raman shift is in the range of 100cm−1 and 800cm−1.
The details of the Raman scattering separation can be
seen in Figure 20 in Appendix A. This is in the range of
791.21nm and 837.60nm scattering; whereas the sample
is irradiated at 785nm. Therefore, this is the reasonable
range of interest for Raman scattering for all data selec-
tion. By training the logistic regression model, the classi-
fication using mean and standard deviation shows 100 %
accuracy against the blank ABS (226 samples) filament
for both GNRs (179 samples) and DTTCI (71 samples)
embedded filaments.
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Figure 12: Mean measurement of Raman scattering of
3D printed disks using acrylonitrile butadiene styrene
(ABS) filament and ABS with gold naonorods (GNRs)
and 3,3’-Diethylthiatricarbocyanine iodide (DTTCI) em-
bedded.

In Raman spectroscopy, the maximum setting depth
penetration for the Renishaw InVia micro-Raman sys-
tem is approximately 300 µm, we cannot verify the 3D
printed object where the GNRs or DTTCI embedded fil-
ament is implanted further inside the object. Therefor,
the Raman spectroscopy would not be sufficient for the
verification that require depth. In further analysis, we use
the MicroCT scanner to evaluate the internal structure of
3D printed objects.

The initial results for the CT scan approach presented
in Figure 7 showed that although the GNRs embedded
filament contrasted well in the CT scan, we could not
rely on the custom filament due to the sparse distribution
of the GNRs. We did not have the equipment nor the
expertise to manufacture a heavily saturated filament.

Figure 13: Classification of blank acrylonitrile butadi-
ene styrene (ABS), gold nanorods (GNRs), and 3,3’-
Diethylthiatricarbocyanine iodide (DTTCI) dye embed-
ded filament in 3D printed disks.
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(a) PLA filament. (b) Stainless steel filament.

Figure 14: Comparison of X-ray densities of PLA and
stainless steel filaments.

For a more precise proof of concept, we used commer-
cially available stainless steel filaments where the fila-
ment is heavily saturated with stainless steel particles.
Under the CT scanning, the steel particles would produce
similar response to the GNRs due to high X-ray den-
sity. Although stainless steel is not biocompatible, it will
serve as a substitute for the GNRs in order to provide pre-
cise visibility in the CT scan. Furthermore, we changed
the control filament from ABS to polylactic acid (PLA)
after comparing the densities in the CT scan. The X-ray
properties of PLA versus ABS have been studied [51],
but we confirmed our assumption after simple trial and
error. Figure 14 highlights the contrast in X-ray densi-
ties between the PLA filament and the stainless steel fil-
ament. We will discuss in the subsequent section how we
evaluated this approach on a tibial prosthesis.

4.3 Case Study: Prosthetic Knee
As described in subsection 2.5, a model of the tibial com-
ponent of a prosthetic knee implant was used as a design
for a use case test. Prosthetics differ slightly between pa-
tients, so we assume that malicious print identification is
performed periodically with a known standard prosthetic
design. Real-Time and post-production visualization are
still performed on each print.

Figure 15: Comparison of target 60% Rectilinear Fill
Tibial Prosthetic print acoustic classification (Top) vs.
malicious 20% Honeycomb Fill (bottom). CTh = 0.

Error Identification. The acoustic verification results

are shown in Figure 15 which shows the confidence val-
ues of both the target print and the malicious print. These
results are gathered using the same technique as those
described in section 3 with audio slices of length 120s
and CTh = 0. By setting CTh = 0, we see that a posi-
tive error classification can be made within the first 360s
of the print or the first 4% of the total known print time
by only observing out-of-sequence index classifications.
The CTh may be set to anything less than 18 without
causing a false positive. Overall, acoustic error detec-
tion itself saves over 2 hours of print time and prevents
a potentially harmful print from being completed. A de-
tailed table of the results shown here can be found in Ap-
pendix B.

In Figure 16, the FFT of a target print and a malicious
print are compared to a training print. Similar to Fig-
ure 10, the malicious print shows a different frequency
response near 0.2Hz as highlighted by the lower box.
The upper box highlights the closeness of the peaks be-
tween the training and target prints and the difference
between those and the malicious print. The full print of
the object requires 111 layers, so it would take less 1% of
the time of the total print to identify the erroneous pattern
once it begins.

Figure 16: Comparison of x-axis frequency response for
a layer of a layer of the tibial knee implant design.

Real-Time Visualization. In this test, the target print
uses a 60% Rectilinear fill and the malicious print uses a
20% Honeycomb fill. In the attack, the visualization of
the intended G-code remains unaltered for the user while
the instructions sent to the printer are altered. The con-
sequences of this attack would be to cause accelerated
wear in the implant causing pain and financial loss for
the victim who has the implant.

For the print identification and real-time visualization
tests, a full sized prosthetic design is used. However, due
to the size limitations of the MicroCT scanner, a signifi-
cantly scaled down version of the same design is used.

The training, target, and attack prints were each
recorded on the Lulzbot Taz6 printer. Due to the avail-
ability of the experimental setup, a single layer of each
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of these prints was performed by the Dobot Magician for
the visualization tests. The exact same G-code was used
for the Dobot prints as in the Taz6 with the exception of
the extruder being disabled and the speeds decreased to
suit the capabilities of Dobot. It should be noted that spa-
tial verification testing is entirely plausible on the Taz6
which has a moving base because the measurements de-
scribe the relative position between the nozzle and the
base. This is regardless of whether that base is a station-
ary table or a moving part of the printer. It should also
be noted that both acoustic and spatial verification would
ideally be performed in tandem, but for testing purposes
here, they are not.

Figure 17 shows the spatial verification visualization
of, in order of left to right, a G-code visualization of the
training print, a spatial reconstruction of the target print,
and a spatial reconstruction of the malicious print. It is
clear that the recreated target print uses a rectilinear fill
at approximately the correct density while the malicious
print differs significantly from the intended G-code. Due
to the warping that occurs in the spatial reconstruction,
a user would not be made aware if the shape of the print
were altered by using this method alone.

Post Production Visualization. We only considered the
CT scan approach for the post production visualization as
the Raman spectroscopy would not be able to verify the
internal structure of the tibial prosthesis due to its depth
limitations. Figure 18 shows an X-ray scan of the front
of a PLA tibial prosthesis with 2 infill layers of steel. Be-
cause we had to use a MicroCT scanner, the part of the
tibial insert was scaled down to fit within a diameter of
about 30 mm. The two large blotches of stainless steel
are simple imperfections that mark points where the sec-
ond extruder began printing.

Figure 19 compares the G-Code representation of the
intended print of the top stainless steel layer–with the
stainless steel path highlighted in red–versus the CT scan
of that layer at a 15 µm/voxel resolution. The CT scan
image is rotated about 45 degrees in comparison to the
intended print. Furthermore, the small model had to be
mounted on a bed of silicone polymer to hold it in place,
so it is not completely level. Despite the imperfections
of the printed model and the scans, it can be seen that
the steel was properly embedded within the walls of the
model and is clearly detectable against the PLA filament.

5 Discussion

In this section, we discuss the various methods of im-
plementing the proposed verification scheme. We then
briefly discuss its limitations.

Implementation. The three layer verification and ma-
licious print detection scheme described here is most
readily suited for a mass production AM scenario. In
this setting, many different standard designs may be
produced using the same equipment. If each design is
printed identically, then the acoustic layer, spatial sens-
ing layer, and materials verification layer may be applied
to each individual print.

In a setting such as the one described for the case study
in subsection 4.3, a base design may be modified for each
print in order to adjust for biological parameters, etc. In
this scenario, the user could train a known standard print
and periodically test the printer for any malicious activ-
ity. This periodic test could include all three layers. Each
specialized design, then, could be monitored using spa-
tial and materials verification for real time and post pro-
duction detection of malicious activity.

Finally, this verification scheme may be used in a sce-
nario in which an end user sends a design to a third party
to be printed. For the materials verification layer, she
may send a specialized filament with embedded track-
ers to be used. If the object returns without the trackers
or with trackers in the wrong locations, malicious activ-
ity may be detected. Also, using a secure live streaming
connection, the user may receive data from the print in
progress and perform any classification or analysis her-
self.

The experiments presented in this paper focus primar-
ily on on the detection of subtle changes in the internal
fill pattern. Therefore, it is logical that more significant
changes such as holes in the fill pattern or changes in the
overall design will be easily detected.

Limitations. As with any verification schema, the sys-
tem proposed here is not without limitations. The imme-
diately obvious limitation is that the ability to detect a
deviation from a training print decreases as the similarity
to the print increases. However, drawn to its logical con-
clusion, this means that an attacker wishing to exploit
this limitation would be forced to change the design in
such a small way as to not affect its usefulness. Another
limitation could be the need for a training print. This
may be a minor issue in the mass production scheme de-
scribed above. In a scenario such as the production of
prosthetics, however, the periodic checks for malicious
activity may be seen as time consuming. Finally, if a
third party printing service implements these methods,
some cost overhead will incur from the purchase of mi-
crophones, sensors, etc. However, these costs are rela-
tively cheap considering that any major equipment such
as a spectroscope or CT scanner would be in the domain
of the end user.
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Figure 17: Comparison of target and malicious tibial knee implant prints. Left: G-code reconstruction of 60% Rec-
tilinear fill, Middle: Spatial reconstruction of 60% Rectilinear fill, Right: Spatial reconstruction of malicious 20%
Honeycomb fill.

2 
1 

Figure 18: X-ray scan of front of PLA tibia with em-
bedded stainless steel at a 15 µm/voxel size resolution.
The first label shows the side view of the cross-sectional
stainless steel infill, while the second label shows the two
blotches where the stainless steel print began.

G-Code CT Scan: Upper Layer

Figure 19: Comparison of G-code simulation of embed-
ded steel (shown as red lines) versus CT scan of the
printed model. The CT scan image is rotated about 45
degrees.

6 Conclusion

Three layers of verification for AM are presented for a
case in which either a control PC or printer firmware is
compromised. Acoustic verification uses audio classifi-
cation to determine whether a print matches a previously
known print. Spatial verification provides a visualization
of the print in real time along with data for frequency
analysis of the printing process. Materials verification
determines whether the correct materials were used and
whether indicator patterns appear in the proper locations.
Each layer is independent of firmware or a controller PC.

Acoustic and spatial verification are found to be useful
for confirming the intended fill pattern and density in a
print, and material verification is found to be most useful
in determining that the correct material is used and that
the design is free of tampering.

Future work will include improving the acoustic and
spatial classification methods so that they work indepen-
dently of human interaction and in real-time. Similarly,
the materials verification methods presented in this paper
could be tuned for domain-specific solutions to be more
precise. This would facilitate automated materials verifi-
cation solutions.
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APPENDIX

A Raman Spectroscopy Measurements

Figure 20 shows the Raman spectroscopy measurements
of 3D printed disks of Raman scattering enhancers gold
nanorods (GNRs), and Diethylthiatricarbocyanine iodide
(DTTCI) embedded in acrylonitrile butadiene styrene
(ABS) filament.
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Figure 20: (a) Raman spectra GNRs embedded ABS fil-
ament. The GNRs amplifies Raman scattering of ABS.
Inset figure shows the separation between the blank ABS
and GNRs embedded ABS Raman spectra. (b) Raman
spectra of ABS and DTTCI embedded ABS filaments.
Large separation is due to the large quantity of enhancer
embedded in ABS filament.
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B Detailed Results of Acoustic Classifica-
tion on Tibial Knee Prosthetic
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