Introduction

VHDL

• What is VHDL?

Very **H**igh **S**peed **I**ntegrated **C**ircuit

Hardware

Description

Language

IEEE Standard 1076-1993
History of VHDL

- Designed by IBM, Texas Instruments, and Intermetrics as part of the DoD funded VHSIC program
- Standardized by the IEEE in 1987: IEEE 1076-1987
- Enhanced version of the language defined in 1993: IEEE 1076-1993
- Additional standardized packages provide definitions of data types and expressions of timing data
 - IEEE 1164 (data types)
 - IEEE 1076.6 (numeric)
 - IEEE 1076.4 (timing)

Traditional vs. Hardware Description Languages

- Procedural programming languages provide the how or recipes
 - For computation
 - For data manipulation
 - For execution on a specific hardware model

- Hardware description languages describe a system
 - Systems can be described from many different points of view
 - Behavior: what does it do?
 - Structure: what is it composed of?
 - Functional properties: how do I interface to it?
 - Physical properties: how fast is it? How much power does it generate?
Usage

- Descriptions can be at different levels of abstraction
 - Switch level: model switching behavior of transistors
 - Register transfer level: model combinational and sequential logic components
 - Instruction set architecture level: functional behavior of a microprocessor
 - Behavioral level: model the computations

- Descriptions can used for
 - Simulation
 - Verification, performance evaluation
 - Synthesis
 - First step in hardware design

Why do we Describe Systems?

- Design Specification
 - Unambiguous definition of components and interfaces in a large design

- Design Simulation
 - Verify system/subsystem/chip performance prior to design implementation

- Design Synthesis
 - Automated generation of a hardware design
Digital System Design Flow

- Design flows operate at multiple levels of abstraction
- Need a uniform description to translate between levels
- Increasing costs of design and fabrication necessitate greater reliance on automation via CAD tools
 - $5M - $100M to design new chips
 - Increasing time to market pressures

Embedded Systems

- Embedded systems requirements
 - Physical: footprint, power
 - Behavior: performance, predictability
 - Performance characteristics typically determined by a few application kernels
 - Economic: time to market, NRE cost constraints dominate

- Customization has been met with custom hardware solutions
 - Chip market as a whole is expected to be $250B by 2008

Customization is the key!
Increasing Cost of Customization*

- Cost and Risk rising to unacceptable levels
- Top cost drivers
 - Verification (40%)
 - Architecture Design (23%)
 - Embedded Software Design
 - 1400 man months (SW)
 - 1150 man months (HW)
 - HW/SW integration

Example: Design with 80 M transistors in 100 nm technology

Estimated Cost - $85 M - $90 M

12 – 18 months

A Synthesis Design Flow

- Requirements
- VHDL Model
 - Functional Design
- VHDL Model
 - Register Transfer Level Design
- Logic Simulation
 - Synthesis
 - Place and Route
 - Timing Extraction
- Behavioral Simulation (VHDL)

- Automation of design refinement steps
- Feedback for accurate simulation
- Example targets: ASICs, FPGAs
The Role of Hardware Description Languages

- Design is structured around a hierarchy of representations
- HDLs can describe distinct aspects of a design at multiple levels of abstraction

[Interoperability: models at multiple levels of abstraction]
[Technology independence: portable model]
[Design re-use and rapid prototyping]
The Marketplace

- Time to market delays have a substantial impact on product revenue
- First 10%-20% of design cycle can determine 70%-80% of the cost
- Costs are rising rapidly with each new generation of technology
- Need standards and re-use → automation centered around HDL based tools such as VHDL

Alternatives

- The Verilog hardware description language
 - Finding increasing use in the commercial world
 • SystemVerilog gaining prominence
 - VHDL dominates the aerospace and defense worlds

- Design flows based on procedural programming languages
 - SystemC
 • C++ with additional hardware-based language elements
 - C-based design flows
 • (C + extensions) as well as ANSI C based
 - Other
 • Java, MATLAB, and specialized languages
Role of VHDL

Very High Speed Integrated Circuit

Hardware

Description

Language

- System description and documentation
- System simulation
- System synthesis